Cho hàm số: có đồ thị là (C). Tìm tọa độ điểm M thuộc đồ thị (C) sao cho tổng khoảng cách từ điểm M đến hai đường tiệm cận đạt giá trị nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi M a; a + 2 a − 2 thuộc đồ thị hàm số
d ( M;TCD ) = a − 2
d ( M;TCN ) = 4 a − 2
Tổng khoảng cách= a − 2 + 4 a − 2 ≥ 2 a − 2 . 4 a − 2 = 4
Dấu bằng xảy ra khi a − 2 = 4 a − 2 ⇔ a=4 a=0 do hoành độ dương nên a=4
Vậy M(4;3)
Đáp án B
Gọi M a; a + 2 a − 2 thuộc đồ thị hàm số
d ( M;TCD ) = a − 2
d ( M;TCN ) = 4 a − 2
Tổng khoảng cách = a − 2 + 4 a − 2 ≥ 2 a − 2 . 4 a − 2 = 4
Dấu bằng xảy ra khi a − 2 = 4 a − 2 ⇔ a=4 a=0 do hoành độ dương nên a=4
Vậy M(4;3)
Đáp án A
Gọi M a ; 2 a + 2 a − 1 , tiệm cận đứng x = 1 ; tiệm cận ngang y = 2 .
Khi đó d = d M ; T C D + d M ; T C N = a − 1 + 4 a − 1 ≥ 4
Dấu bằng xảy ra ⇔ a − 1 2 = 4 ⇔ a = 3 a = − 1 ⇒ M − 1 ; 0 M 3 ; 4 .
Đáp án A
Đồ thị hàm số y = 2 x + 2 x − 1 C có hai đường tiệm cận là x = 1 d 1 ; y = 2 d 2 .
Gọi M ∈ C ⇒ M m ; 2 m + 2 m − 1 → d M ; d 1 = m − 1 d M ; d 2 = 2 m + 2 m − 1 − 2 = 4 m − 1
Khi đó d M ; d 1 + d M ; d 2 = m − 1 + 4 m − 1 ≥ 2 m − 1 . 4 m − 1 = 4 .
Dấu “=” xảy ra ⇔ m − 1 = 4 m − 1 ⇔ m − 1 2 = 4 ⇔ m = 3 m = − 1 .
Vậy M 3 ; 4 M − 1 ; 0 .
Dễ thấy tiệm cân đứng của \(\left(C\right)\) là \(d_1:x+1=0\), tiệm cân ngang là \(d_2:y-2=0\)
Vì \(M\in\left(C\right)\) nên \(M\left(x_0;\frac{2x_0-1}{x_0+1}\right)\), ta có:
\(d\left(M,d_1\right)=\left|x_0+1\right|;d\left(M,d_2\right)=\left|\frac{2x_0-1}{x_0+1}-2\right|=\left|\frac{-3}{x_0+1}\right|\)
Suy ra \(d\left(M,d_1\right)+d\left(M,d_2\right)=\left|x_0+1\right|+\left|\frac{-3}{x_0+1}\right|\ge2\sqrt{\left|x_0+1\right|.\left|\frac{-3}{x_0+1}\right|}=2\sqrt{3}\)
Đạt được khi \(M\left(\sqrt{3}-1;2-\sqrt{3}\right)\) hoặc \(M\left(-\sqrt{3}-1;2+\sqrt{3}\right)\)