K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

c: góc AID=góc BIH=90 độ-góc IBH

góc ADI=90 độ-góc ABD

mà góc IBH=góc ABD

nên góc ADI=góc AID

=>ΔAID cân tại A

23 tháng 3 2022

-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!

a. △AHB∼△CAB (g-g) ; △CHA∼CAB (g-g) \(\Rightarrow\)△AHB∼△CHA (t/c bắc cầu)

b. \(\widehat{ABI}=\widehat{CBD}\) (BD là tia phân giác của góc ABC) ; \(\widehat{BAI}=\widehat{BCD}\)

(△AHB∼△CHA) \(\Rightarrow\)△BIA∼△BDC (g-g)

c. △BAD∼△HBI (g-g) \(\Rightarrow\widehat{ADB}=\widehat{BIH}=\widehat{AID}\)

\(\Rightarrow\)△AID cân tại A.

d. \(\dfrac{BI}{BD}=\dfrac{BA}{BC}\) (BIA∼△BDC) mà \(\dfrac{BA}{BC}=\dfrac{DA}{DC}\) (BD là phân giác của △ABC)

\(\Rightarrow\dfrac{BI}{BD}=\dfrac{AD}{CD}\Rightarrow AD.BD=BI.DC\)

 

 

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

b: góc BAD+góc CAD=90 độ

góc BDA+góc HAD=90 độ

mà góc CAD=góc HAD

nên góc BAD=góc BDA

=>ΔBAD cân tại B

=>BF vuông góc AD tại F

Xét ΔEFA vuông tại F và ΔEHB vuôg tại H có

góc FEA=góc HEB

=>ΔEFA đồng dạng với ΔEHB

=>EF/EH=EA/EB

=>EF*EB=EA*EH

c: Xét ΔBAK và ΔBDK có

BA=BD

góc ABK=góc DBK

BK chung

=>ΔBAK=ΔBDK

=>góc BDK=90 độ

=>DK vuông góc BC

=>DK//AH

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔBAC có BD là phan giác

=>AD/AB=DC/BC

=>AD/3=DC/5=8/8=1

=>AD=3cm; DC=5cm

b: Xét ΔBAD vuông tại A va ΔBHI vuông tại H có

góc ABD=góc HBI

=>ΔBAD đồng dạng với ΔBHI

=>AD/HI=BA/BH

=>AD*BH=HI*BA
c: góc ADI=góc BIH=góc AID

=>ΔAID cân tại A

3 tháng 7 2018

côcc2345

3 tháng 7 2018

x A B C D H K G

a) Xét tam giác ABD và tam giác HBD ta có :

BD là cạnh chung

góc ABD = góc HBD ( vì BD là tia phải giác )

góc BAD = góc BHD = 90o

Do đó tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )

Gọi G là điểm cắt giữa đoạn thẳng AH và BD

Vì tam giác ABD = tam giác HBD => AB=BH ( 2 cạnh tương ứng )

Xét tam giác ABG và tam giác BHG có :

AB = BH

góc ABG = góc HBG ( vì B là góc phân giác )

BG chung

Do đó tam giác AGB = tam giác BGH (c-g-c)

=> góc AGB = góc HGB ( 2 góc tương ứng )

b) Từ a => AB = BH ( 2 cạnh tương ứng )

Xét tam giác ABC và tam giác HBK có :

AB = BH 

góc B chung

góc BAC = góc BHK = 90o

Do đó tam giác ABC = tam giác HBK ( cạnh góc vuông - góc nhọn )

a) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(gt)

nên \(\dfrac{IA}{IH}=\dfrac{BA}{BH}\)(Tính chất đường phân giác)

hay \(IA\cdot BH=IH\cdot BA\)(đpcm)

a: Xet ΔBHA vuông tại H và ΔBAC vuông tại A có

góc HBA chung

=>ΔBHA đồng dạng với ΔBAC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

BD là phân giác

=>DA/AB=DC/BC

=>DA/3=DC/5=8/8=1

=>DA=3cm; DC=5cm

c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

=>ΔBAD đồng dạng với ΔBHI

=>BA/BH=BD/BI

=>BA*BI=BD*BH

d: ΔBAD đồng dạng với ΔBHI

=>\(\dfrac{S_{BAD}}{S_{BHI}}=\left(\dfrac{BA}{BH}\right)^2=\left(\dfrac{6}{3.6}\right)^2=\dfrac{25}{9}\)

=>\(S_{BHI}=\dfrac{1}{2}\cdot6\cdot3:\dfrac{25}{9}=9\cdot\dfrac{9}{25}=\dfrac{81}{25}\)

21 tháng 4 2023

tính ra ở câu b nó dech lquan gì đến đề luôn?

30 tháng 4 2019

Lần sau chép đề cẩn thận nhé. Sai tùm lum.

a, ΔAHB = ΔAHC.

Xét hai tam giác vuông AHB và AHC có:

AB = AC (hai cạnh bên)

^B = ^C (hai góc ở đáy)

Do đó: ΔAHB =  ΔAHC (cạnh huyền - góc nhọn)

b, ΔDHC cân. DM//AH. (sửa M là trung điểm HC nhé ! )

Vì HD//BA (gt) => ^B = ^H1 (đồng vị) 

Mà ^B = ^C => ^H1 = ^C => ΔDHC cân tại D (hai góc ở đáy)

Xét ΔDHM và ΔDCM có:

DH = DC (hai cạnh bên)

HM = MC (M là trung điểm của HC)

DM : chung

Do đó: ΔDHM = ΔDCM (c.c.c)

=> ^M1 = ^M2 (hai góc tương ứng)

Mà ^M1 + ^M2 = 180o (kề bù)

=> ^M1 = ^M2 = 180o : 2 = 90o hay DM ⊥ BC.

Vậy DM // AH (cùng vuông góc với BC).

c, G là trọng tâm ΔABC. AH + BD > 3HD.

Ta có: ^H2 = ^A1 (so le trong)

Mà ^A1 = ^A2 (hai góc tương ứng)

=> ^H2 = ^A2 => ΔHDA cân tại D (hai góc ở đáy) 

=> DA = DH (hai cạnh bên)

Vì DH = DC (hai cạnh bên)

     DA = DH (hai cạnh bên)

=> DA = DC 

=> BD là trung tuyến ứng với cạnh bên AC.

Vì BH = HC (hai cạnh tương ứng) => AH là trung tuyến ứng với cạnh đáy BC.

Mà AC cắt BC tại G => CG là trung tuyến ứng với cạnh bên AB

=> G là trọng tâm của  ΔABC.

30 tháng 4 2019

A C B H M 1 2 D 1 1 2 2 1 2