Cho tam giác ABC vuông tại A có đcao AH cắt đường phân giác BD tại I
a,CM : tam giác AHB ∼ tam giác CHA
b,CM : tam giác BIA ∼ tam giác BDC
c,CM : tam giác AID cân
d,CM : AD.BD=BI.DC
Giup mk vs ai nhanh mk tick ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!
a. △AHB∼△CAB (g-g) ; △CHA∼CAB (g-g) \(\Rightarrow\)△AHB∼△CHA (t/c bắc cầu)
b. \(\widehat{ABI}=\widehat{CBD}\) (BD là tia phân giác của góc ABC) ; \(\widehat{BAI}=\widehat{BCD}\)
(△AHB∼△CHA) \(\Rightarrow\)△BIA∼△BDC (g-g)
c. △BAD∼△HBI (g-g) \(\Rightarrow\widehat{ADB}=\widehat{BIH}=\widehat{AID}\)
\(\Rightarrow\)△AID cân tại A.
d. \(\dfrac{BI}{BD}=\dfrac{BA}{BC}\) (BIA∼△BDC) mà \(\dfrac{BA}{BC}=\dfrac{DA}{DC}\) (BD là phân giác của △ABC)
\(\Rightarrow\dfrac{BI}{BD}=\dfrac{AD}{CD}\Rightarrow AD.BD=BI.DC\)
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
b: góc BAD+góc CAD=90 độ
góc BDA+góc HAD=90 độ
mà góc CAD=góc HAD
nên góc BAD=góc BDA
=>ΔBAD cân tại B
=>BF vuông góc AD tại F
Xét ΔEFA vuông tại F và ΔEHB vuôg tại H có
góc FEA=góc HEB
=>ΔEFA đồng dạng với ΔEHB
=>EF/EH=EA/EB
=>EF*EB=EA*EH
c: Xét ΔBAK và ΔBDK có
BA=BD
góc ABK=góc DBK
BK chung
=>ΔBAK=ΔBDK
=>góc BDK=90 độ
=>DK vuông góc BC
=>DK//AH
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔBAC có BD là phan giác
=>AD/AB=DC/BC
=>AD/3=DC/5=8/8=1
=>AD=3cm; DC=5cm
b: Xét ΔBAD vuông tại A va ΔBHI vuông tại H có
góc ABD=góc HBI
=>ΔBAD đồng dạng với ΔBHI
=>AD/HI=BA/BH
=>AD*BH=HI*BA
c: góc ADI=góc BIH=góc AID
=>ΔAID cân tại A
a) Xét tam giác ABD và tam giác HBD ta có :
BD là cạnh chung
góc ABD = góc HBD ( vì BD là tia phải giác )
góc BAD = góc BHD = 90o
Do đó tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )
Gọi G là điểm cắt giữa đoạn thẳng AH và BD
Vì tam giác ABD = tam giác HBD => AB=BH ( 2 cạnh tương ứng )
Xét tam giác ABG và tam giác BHG có :
AB = BH
góc ABG = góc HBG ( vì B là góc phân giác )
BG chung
Do đó tam giác AGB = tam giác BGH (c-g-c)
=> góc AGB = góc HGB ( 2 góc tương ứng )
b) Từ a => AB = BH ( 2 cạnh tương ứng )
Xét tam giác ABC và tam giác HBK có :
AB = BH
góc B chung
góc BAC = góc BHK = 90o
Do đó tam giác ABC = tam giác HBK ( cạnh góc vuông - góc nhọn )
a) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(gt)
nên \(\dfrac{IA}{IH}=\dfrac{BA}{BH}\)(Tính chất đường phân giác)
hay \(IA\cdot BH=IH\cdot BA\)(đpcm)
a: Xet ΔBHA vuông tại H và ΔBAC vuông tại A có
góc HBA chung
=>ΔBHA đồng dạng với ΔBAC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=8/8=1
=>DA=3cm; DC=5cm
c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có
góc ABD=góc HBI
=>ΔBAD đồng dạng với ΔBHI
=>BA/BH=BD/BI
=>BA*BI=BD*BH
d: ΔBAD đồng dạng với ΔBHI
=>\(\dfrac{S_{BAD}}{S_{BHI}}=\left(\dfrac{BA}{BH}\right)^2=\left(\dfrac{6}{3.6}\right)^2=\dfrac{25}{9}\)
=>\(S_{BHI}=\dfrac{1}{2}\cdot6\cdot3:\dfrac{25}{9}=9\cdot\dfrac{9}{25}=\dfrac{81}{25}\)
Lần sau chép đề cẩn thận nhé. Sai tùm lum.
a, ΔAHB = ΔAHC.
Xét hai tam giác vuông AHB và AHC có:
AB = AC (hai cạnh bên)
^B = ^C (hai góc ở đáy)
Do đó: ΔAHB = ΔAHC (cạnh huyền - góc nhọn)
b, ΔDHC cân. DM//AH. (sửa M là trung điểm HC nhé ! )
Vì HD//BA (gt) => ^B = ^H1 (đồng vị)
Mà ^B = ^C => ^H1 = ^C => ΔDHC cân tại D (hai góc ở đáy)
Xét ΔDHM và ΔDCM có:
DH = DC (hai cạnh bên)
HM = MC (M là trung điểm của HC)
DM : chung
Do đó: ΔDHM = ΔDCM (c.c.c)
=> ^M1 = ^M2 (hai góc tương ứng)
Mà ^M1 + ^M2 = 180o (kề bù)
=> ^M1 = ^M2 = 180o : 2 = 90o hay DM ⊥ BC.
Vậy DM // AH (cùng vuông góc với BC).
c, G là trọng tâm ΔABC. AH + BD > 3HD.
Ta có: ^H2 = ^A1 (so le trong)
Mà ^A1 = ^A2 (hai góc tương ứng)
=> ^H2 = ^A2 => ΔHDA cân tại D (hai góc ở đáy)
=> DA = DH (hai cạnh bên)
Vì DH = DC (hai cạnh bên)
DA = DH (hai cạnh bên)
=> DA = DC
=> BD là trung tuyến ứng với cạnh bên AC.
Vì BH = HC (hai cạnh tương ứng) => AH là trung tuyến ứng với cạnh đáy BC.
Mà AC cắt BC tại G => CG là trung tuyến ứng với cạnh bên AB
=> G là trọng tâm của ΔABC.
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
c: góc AID=góc BIH=90 độ-góc IBH
góc ADI=90 độ-góc ABD
mà góc IBH=góc ABD
nên góc ADI=góc AID
=>ΔAID cân tại A