K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

\(\frac{\left(\sqrt{A}+3\right)^2}{\sqrt{A}+3}=\frac{\left(\sqrt{A}+3\right)\left(\sqrt{A}+3\right)}{\sqrt{A}+3}=\sqrt{A}+3\)

26 tháng 7 2016

Giải pt sau:

\(\sqrt{2x-1}\)- x =0

\(\sqrt{2x-1}\)+ x = 0

5 tháng 2 2022

\(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}-1}+1}=\dfrac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)}{\sqrt{3}}-\dfrac{\sqrt{3}\left(\sqrt{\sqrt{3}-1}-1\right)}{\sqrt{3}}=\dfrac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}-\sqrt{\sqrt{3}-1}+2\right)}{\sqrt{3}}=\sqrt{\sqrt{3}+1}-\sqrt{\sqrt{3}-1}+2\)

5 tháng 2 2022

Bấm máy lại xem KQ đúng chưa háy

18 tháng 5 2021

`a)đk:a>0,a ne 9`

`A=((sqrta+3+sqrta-3)/(a-9)).((sqrta-3)/sqrta)`

`=((2sqrtx)/(a-9)).((sqrta-3)/sqrta)`

`=2/(sqrta+3)`

`b)A>1/2`

`<=>2/(sqrta+3)>1/2`

`<=>sqrta+3<4`

`<=>sqrta<1`

`<=>a<1`

KẾt hợp đkxđ:`0<x<1`

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne9\end{matrix}\right.\)

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-3}+\dfrac{1}{\sqrt{a}+3}\right)\left(1-\dfrac{3}{\sqrt{a}}\right)\)

\(=\dfrac{\sqrt{a}+3+\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\cdot\dfrac{\sqrt{a}-3}{\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}}{\sqrt{a}+3}\cdot\dfrac{1}{\sqrt{a}}\)

\(=\dfrac{2}{\sqrt{a}+3}\)

b) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{2}{\sqrt{a}+3}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{4-\left(\sqrt{a}+3\right)}{2\left(\sqrt{a}+3\right)}>0\)

mà \(2\left(\sqrt{a}+3\right)>0\forall a\)

nên \(1-\sqrt{a}>0\)

\(\Leftrightarrow\sqrt{a}< 1\)

hay a<1

Kết hợp ĐKXĐ, ta được: 0<a<1

\(A=\sqrt{5-2\sqrt{6}}-\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}-\sqrt{3}+\sqrt{2}\)

=0

18 tháng 9 2021

\(3\sqrt{144}-5\sqrt{49}+\dfrac{1}{2}\sqrt{36}\)

\(=3.12-5.7+\dfrac{1}{2}.6\)

\(=36-35+3=4\)

19 tháng 6 2021

Đk: \(a\ge0\)

\(\dfrac{a-\sqrt{3a}+3}{a\sqrt{a}+3\sqrt{3}}=\dfrac{a-\sqrt{3a}+3}{\left(\sqrt{a}+\sqrt{3}\right)\left(a-\sqrt{3a}+3\right)}=\dfrac{1}{\sqrt{a}+\sqrt{3}}=\dfrac{\sqrt{a}-\sqrt{3}}{a-3}\)

19 tháng 6 2021

Ta có: \(a\sqrt{a}+3\sqrt{3}=\left(\sqrt{a}\right)^3+\left(\sqrt{3}\right)^3=\left(\sqrt{a}+\sqrt{3}\right)\left(a+3-\sqrt{3a}\right)\)

\(\Rightarrow\dfrac{a-\sqrt{3a}+3}{a\sqrt{a}+3\sqrt{3}}=\dfrac{a-\sqrt{3a}+3}{\left(\sqrt{a}+\sqrt{3}\right)\left(a+3-\sqrt{3a}\right)}=\dfrac{1}{\sqrt{a}+\sqrt{3}}\)

a) Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

b) Ta có: \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{2}+1-\sqrt{2}+1\)

=2

Thay x=2 vào A, ta được:

\(A=\dfrac{-3}{3+\sqrt{2}}=\dfrac{-9+3\sqrt{2}}{7}\)

18 tháng 1 2022

30,001x3​=3(0,1x)3​=0,1x;

\sqrt[3]{-125 a^{12}}=\sqrt[3]{\left(-5 a^{4}\right)^{3}}=-5 a^{4};3−125a12​=3(−5a4)3​=−5a4;

\sqrt[3]{27 x^{6}}=\sqrt[3]{\left(3 x^{2}\right)^{3}}=3 x^{2};327x6​=3(3x2)3​=3x2;

\sqrt[3]{-0,343 a^{3}}=\sqrt[3]{(-0,7 a)^{3}}=-0,7 a;3−0,343a3​=3(−0,7a)3​=−0,7a;

Ta rút gọn các biểu thức như sau:

\(\sqrt[3]{0,001x^3}=\sqrt[3]{\left(0,1x\right)^3}=0,1x.\)

\(\sqrt[3]{-125a^{12}}=\sqrt[3]{\left(-5a^4\right)^3}=-5a^4\)

\(\sqrt[3]{27x^6}=\sqrt[3]{\left(3x^2\right)^3}=3x^2\)

\(\sqrt[3]{-0,343a^3}=\sqrt[3]{\left(-0,7a\right)^3}=-0,7a\)

16 tháng 12 2023

a) \(A=\sqrt{18}.\sqrt{2}-\sqrt{48}:\sqrt{3}=\sqrt{18.2}-\sqrt{48:3}\)

\(=\sqrt{36}-\sqrt{16}=6-4=2\)

b) \(B=\dfrac{8}{\sqrt{5}-1}+\dfrac{8}{\sqrt{5}+1}=\dfrac{8\sqrt{5}+8+8\sqrt{5}-8}{\left(\sqrt{5}-1\right).\left(\sqrt{5}+1\right)}=\dfrac{16\sqrt{5}}{4}=4\sqrt{5}\)

4 tháng 8 2017

rút căn từ trong ngoặc trước như câu trên bạn ạ

4 tháng 8 2017

\(A=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(A=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}\)

\(A=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(A=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(A=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

a) Ta có: \(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}\)

\(=5\sqrt{a}-15a\sqrt{a}+12b\sqrt{a}-6\sqrt{a}\)

\(=-\sqrt{a}-15a\sqrt{a}+12\sqrt{a}b\)

b) Ta có: \(\sqrt{64ab^3}-3\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\)

\(=8b\sqrt{a}-6ab\sqrt{3ab}+6ab\sqrt{ab}-45a^2b\sqrt{ab}\)

9 tháng 7 2021

a)\(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}=5\sqrt{a}-15\left|a\right|\sqrt{a}+12\left|b\right|\sqrt{a}-6\sqrt{a}=-\sqrt{a}-15a\sqrt{a}+12b\sqrt{a}\)

b)\(\sqrt{64ab^3}-3\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\)

\(=8\left|b\right|\sqrt{ab}-6\left|ab\right|\sqrt{3ab}+6ab\sqrt{ab}-45b\left|a\right|\sqrt{ab}\)

\(=8b\sqrt{ab}-6ab\sqrt{3ab}+6ab\sqrt{ab}-45ab\sqrt{ab}\)

\(=8b\sqrt{ab}-6ab\sqrt{3ab}-39ab\sqrt{ab}\)