cho ΔABC vuông tại A, có AB = 6cm, AC = 8 cm. tia phân giác góc A cắt BC tại D, từ D kẻ DE ⊥ AC (E ∈ AC)
a) tính tỷ số: BDDCBDDC, độ dài BD
b) tính tỷ số: SΔABCSΔEDC
giúp mình nhanh với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:BC=căn 6^2+8^2=10cm
Xét ΔABC có AD là phân giác
nên BD/DC=AB/AC
=>BD/DC=3/4
=>BD/3=CD/4=(BD+CD)/(3+4)=10/7
=>BD=30/7cm
b: Xét ΔCED vuông tại E và ΔCAB vuông tại A có
góc C chung
=>ΔCED đồng dạng với ΔCAB
=>S CED/S CAB=(CD/CB)^2=(4/7)^2=16/49
a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{BD}{6}=\dfrac{CD}{8}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{BC}{14}=\dfrac{7}{14}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{6}=\dfrac{1}{2}\\\dfrac{CD}{8}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=3\left(cm\right)\\CD=4\left(cm\right)\end{matrix}\right.\)
Vậy: BD=3cm; CD=4cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
BC2=AB2+AC2BC2=AB2+AC2
⇔BC2=62+82=100⇔BC2=62+82=100
hay BC=10(cm)
Vậy: BC=10cm
a: Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/4
BC=10cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó: BD=30/7(cm); CD=40/7(cm)
b: Xét ΔABC có DE//AC
nên DE/AC=BD/BC
=>DE/8=3/7
hay DE=24/7(cm)
a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)
a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)
a) BD=45/7 CD=60/7 DE36/7
b) ADB=162/7 BCD k có vì 3 điểm này thẳng hàng
a: Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/4
BC=căn 6^2+8^2=10cm
BD/CD=3/4
=>BD/3=CD/4=(BD+CD)/(3+4)=10/7
=>BD=30/7cm; CD=40/7cm
b: CD/BC=4/7
Xét ΔCED vuông tại E và ΔCAB vuông tại A có
góc C chung
=>ΔCED đồng dạng với ΔCAB
=>S CED/S CAB=(CD/CB)^2=16/49
=>S CED=16/49*1/2*6*8=384/49cm2