\(Cho\)\(a>b>0:\)
\(a.Biết\)\(3a^2+3b^2=10ab.Tính\)\(P=\frac{a-b}{a+b}\)
\(b.Biết\)\(2a^2+2b^2=5ab.Tính\)\(Q=\frac{a+b}{a-b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét : \(P^2=\frac{3\left(a-b\right)^2}{3\left(a+b\right)^2}=\frac{3\left(a^2+b^2\right)-6ab}{3\left(a^2+b^2\right)+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4ab}{16ab}=\frac{1}{4}\)
Vì a > b > 0 nên P > 0 . Vậy \(P=\frac{1}{2}\)
b) Tương tự.
a/ \(3a^2+3b^2=10ab\Leftrightarrow3\left(a^2+b^2\right)=10ab\Leftrightarrow a^2+b^2=\frac{10ab}{3}\)
\(\Leftrightarrow a^2+b^2-2ab=\frac{10ab}{3}-2ab\Leftrightarrow\left(a-b\right)^2=\frac{4ab}{3}\)
tương tự: \(a^2+b^2=\frac{10ab}{3}\Leftrightarrow a^2+b^2+2ab=\frac{10ab}{3}+2ab\Leftrightarrow\left(a+b\right)^2=\frac{16ab}{3}\)
\(\Rightarrow P^2=\left(\frac{a-b}{a+b}\right)^2=\frac{\frac{4ab}{3}}{\frac{16ab}{3}}=\frac{1}{4}\Rightarrow P=\frac{1}{2}\)
Ta có: \(\frac{2a^2+3b^2}{2a^3+3b^3}\left(a+b\right)=1+ab\frac{2a+3b}{2a^3+3b^3}\)
Áp dụng BĐT Holder ta có:
\(\left(2a^3+3b^3\right)\left(2+3\right)^2\ge\left(2a+3b\right)^3\)
Vậy ta có thể viết lại BĐT cần chứng minh như sau;
\(VT\left(a+b\right)\le2+25ab\left(\frac{1}{\left(2a+3b\right)^2}+\frac{1}{\left(2b+3a\right)^2}\right)\)
Nó đủ để ta có thể thấy rằng
\(25ab\left[\left(2b+3a\right)^2+\left(2a+3b\right)^2\right]\le2\left(2a+3b\right)^2\left(2b+3a\right)^2\)
\(\Leftrightarrow59\left(a^2-b^2\right)^2+13\left(a^4+b^4-a^3b-ab^3\right)\ge0\)
BĐT cuối cùng đúng nên ta có ĐPCM
Áp dụng bđt Cauchy-schwarz dạng engel ta có:
1. \(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{\left(a+b+c\right)^2}{\left(a+2b\right)+\left(b+2c\right)+\left(c+2a\right)}=\frac{a+b+c}{3}\)
Dấu "=" \(\Leftrightarrow\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\Leftrightarrow a=b=c\)
2. \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{\left(2a+3b\right)+\left(2b+3c\right)+\left(2c+3a\right)}=\frac{a+b+c}{5}\)
Dấu "=" \(\Leftrightarrow a=b=c\)
bố 32 tuổi
con 6 tuổi
ủng hộ nha
Câu b). Theo đầu bài ta có:
\(2a^2+2b^2=5ab\)
\(\Rightarrow2a^2+2b^2=ab+4ab\)
\(\Rightarrow2a^2+2b^2-4ab=ab\)
\(\Rightarrow2\left(a^2+b^2-2ab\right)=ab\)
\(\Rightarrow\left(a-b\right)^2=\frac{ab}{2}\)
\(\Rightarrow a-b=\sqrt{\frac{ab}{2}}\)
Mà \(2a^2+2b^2=5ab\)
\(\Rightarrow2a^2+2b^2=9ab-4ab\)
\(\Rightarrow2a^2+2b^2+4ab=9ab\)
\(\Rightarrow2\left(a^2+b^2+2ab\right)=9ab\)
\(\Rightarrow\left(a+b\right)^2=\frac{9ab}{2}\)
\(\Rightarrow a+b=\sqrt{\frac{9ab}{2}}\)
Từ trên suy ra:
\(Q=\frac{a+b}{a-b}=\left(a+b\right):\left(a-b\right)\)
\(\Leftrightarrow Q=\sqrt{\frac{9ab}{2}}:\sqrt{\frac{ab}{2}}\)
\(\Leftrightarrow Q=\sqrt{\frac{9ab}{2}:\frac{ab}{2}}\)
\(\Leftrightarrow Q=\sqrt{\frac{9\cdot ab\cdot2}{ab\cdot2}}\)
\(\Leftrightarrow Q=\sqrt{9}=3\)