Hãy tìm A biết A là số lớn nhất với điều kiện sau:
A\(\le\)B
B=\(\frac{1}{\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}+...+\frac{1}{2015}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1985\cdot1987-1\right):\left(1980+1985\cdot1986\right)\)
\(A=3944194\div3944190\)
ko chia hết nên sẽ bằng 1,4 lớn hơn 1
\(\Rightarrow A>1\)
1985x1987-1/1980+1985x1986=1985x1986+1985-1/1980+1985x1986
=1985x1986+1984/1980+1985x1986.Vì 1985x1986+1984>1980+1985x1986
suy ra 1985x1987-1/1980+1985x1986>1
\(\frac{x-1986-1987}{1985}+\frac{x-1985-1987}{1986}+\frac{x-1985-1986}{1987}=3\)
=> \(\left(\frac{x-1986-1987}{1985}-1\right)+\left(\frac{x-1985-1987}{1986}-1\right)+\left(\frac{x-1985-1986}{1987}-1\right)=3-3\)
=> \(\frac{x-1985-1986-1987}{1985}+\frac{x-1985-1986-1987}{1986}+\frac{x-1985-1986-1987}{1987}=0\)
=> \(\left(x-1985-1986-1987\right).\left(\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}\right)=0\)
=> \(\left(x-5958\right).\left(\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}\right)=0\)
Mà \(\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}\ne0\)
=> x - 5958 = 0
=> x = 5958
\(A=\frac{a}{2-a}+\frac{1-a}{1+a}=\frac{2a^2-2a+2}{\left(1+a\right)\left(2-a\right)}\)
\(=1-\frac{3a\left(1-a\right)}{\left(1+a\right)\left(2-a\right)}\le1\)
Min tìm tương tự