K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

Ta có:

87 - 218

= (23)7 - 218

= 221 - 218

= 218.(23 - 1)

= 218.(8 - 1)

= 217.2.7

= 217.14 chia hết cho 14 (đpcm)

22 tháng 7 2016

Ta có:

87 - 218

= (23)7 - 218

= 221 - 218

= 218.(23 - 1)

= 218.(8 - 1)

= 217.2.7

= 217.14 chia hết cho 14 (đpcm)

19 tháng 4 2019

Ta có: 87 - 218 = (23)7 - 218 = 221 – 218 = 217.( 24 -2)= 217.(16 - 2) = 24.14 ⋮ 14

28 tháng 12 2020

Ta có :

8- 218 = ( 23 )7 - 218= 221 -  218 = 218 ( 23 - 1 ) = 218 . 7 = 217 .2.7 = 217 . 14 ( chia hết cho 14 )

Vậy 87-218chia hết cho 14

7 tháng 10

1; 87 - 218 ⋮ 14

    A = 87 - 218 

   A = - 131 (là số lẻ); 14 là số chẵn 

   Số lẻ không bao giờ chi hết cho số chẵn

7 tháng 10

2; 76 + 75 - 913 ⋮ 55

    B = 76 + 75 - 913 

    B = 151 - 913

    B =  - 762 không chia hết cho 5 nên không chia hết cho 55

13 tháng 7 2021

= 1400 nha bn

13 tháng 7 2021

0,2 x 317 x 7 + 0,14 x 3520 + 33,1 x 14 

= (0,2 x 7) x 317 + 0,14 x 3520 + 33,1 x 14 

= 1,4 x 317 + 0,14 x 3520 + 33,1 x 14

= 443,8 + 492,8 + 463,4

= 1400

6 tháng 9 2015

a) Gọi ba số chẵn liên tiếp là: a; a+2; a+4

Ta có: a+a+2+a+4=3a+6

Vì 6 chia hết cho 6=>3a+6 chia hết cho 6

=>tổng của ba số chắn liên tiếp chia hết cho 6

31 tháng 8 2017

a.1111111...1 = 10^(n-1) + 10^(n-2) +....1 (gồm n số 1) 
10^n chia 9 dư 1 => 10^(n-1) = 9.k(n-1) + 1 
10^(n-1) chia 9 dư 1 => 10^(n-2) = 9.k(n-2) +1 
..... 
10 chia 9 dư 1 => 10 = 9.k1 + 1 (ở đây k1=3) 
=>11111....1 = 9.(k1 + k2 +... + k(n-1)) +(1+1+...+1) (gồm n số 1) 
= 9.A + n 
=>8n + 11111...1= 9A +9n chia hết cho 9 
b.11111111....1 (gồm 27 số 1) 
= 1111...100.....0 + 11111...10000...0 + 1111...1 
-------------------------- ----------------------- ----------- 
9chữsố1;18chữsố 0 9chữsô1;9chữsố0 9chữsô1 
=111111111 x (10^18 + 10^9 +1) 
ta có: 111111111 chia hết cho 9 (tổng các chữ số =9) 
10^18 chia 3 dư 1 
10^9 chia 3 sư 1 
=> 10^18 + 10^9 +1 chia hết cho 3 
vậy 1111.....1111 chia hết cho 27 (gồm 27 số 1)

31 tháng 8 2017

Bạn có thể làm lại không bạn 

Xét :11...1 - 10n = (11...1 -n) -9n . Mà : 11...1 -n chia hết cho 9 (vì 111...1 và n có cùng số dư khi chia cho 9 vì tổng các chữ số của 111...1 =n ) và 9n cũng chia hết cho 9 . => (11...1-n) -9n chia hết cho 9 => 11...1 -10n chia hết cho 9 (đpcm)

19 tháng 1 2017

B=\(3^1+3^2+3^3+...+3^{300}\)

  =\(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{299}+3^{300}\right)\) 

  =\(3\left(1+3\right)+3^3\left(1+3\right)+...+3^{299}\left(1+3\right)\)

  =\(3.4+3^3.4+...+3^{299}.4\)

  =\(\left(3+3^3+...+3^{299}\right).4\)

Vì 4\(⋮\)2 mà trong một tích có 1 ts chia hết cho 2 thì tích đó chia hết cho 2 \(\Rightarrow\)B\(⋮\)2