Cho x+y=2. Chứng minh x.y \(\le\)1
Anh em đâu vào đây giải giúp với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x+y=2⇒y=2−x
Khi đó:x.y=x(2−x)=2x−x2
=1−(x2−2x+1)
=1−(x−1)2≤1
=>x.y≤1(đpcm)
Ta có: \(4xy\le\left(x+y\right)^2\)
Lại có: \(x;y>0\)
\(\Rightarrow\left(x+y\right)^2xy>0\)
\(\Rightarrow\frac{4xy}{\left(x+y\right)^2xy}\le\frac{\left(x+y\right)^2}{\left(x+y\right)^2xy}\)
\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{1}{xy}\)
Ta có :
\(\left(x+y\right)^2-4xy\)
\(=x^2+2xy+y^2-4xy\)
\(=x^2-2xy+y^2\)
\(=\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
Lại có : \(x,y>0\)
\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{4}{4xy}\)
\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{1}{xy}\)<đpcm>
Ta có \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)\(\Rightarrow x-2\sqrt{xy}+y\ge0\)\(\Rightarrow x+y\ge2\sqrt{xy}\)
Mà x + y = 2 \(\Rightarrow\)\(2\ge2\sqrt{xy}\)\(\Rightarrow1\sqrt{xy}\le1\)\(\Rightarrow xy\le1\)
Vi 2 = 2 + 0 ; 1 + 1 .nen x.y = 2 . 0 ; 1.1 chi bang 0 hoac 1 nen x.y <= 1
Theo đề bài ta có:
;
cân bằng phương trình bằng cách nhân x vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân y vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân z vào cả hai vế ta có:
vì
Vì Có cùng số mũ và bằng nhau
Nên các cơ số cũng bằng nhau
Ta có: \(x^2=y\cdot z\)
nên \(z=\dfrac{x^2}{y}\)(1)
Ta có: \(y^2=z\cdot x\)
nên \(z=\dfrac{y^2}{x}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)
\(\Leftrightarrow x^3=y^3\)
hay x=y(3)
Ta có: \(x^2=y\cdot z\)
nên \(y=\dfrac{x^2}{z}\)(4)
Ta có: \(z^2=x\cdot y\)
nên \(y=\dfrac{z^2}{x}\)(5)
Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)
\(\Leftrightarrow x^3=z^3\)
hay x=z(6)
Từ (3) và (6) suy ra x=y=z(đpcm)
1. Cho x+y=2.Chứng minh rằng x.y≤1
2. Tìm giá trị lớn nhất của biểu thức: E=\(\dfrac{x^2+8}{x^2+2}\)
1/ Ta có :
\(x+y=2\)
\(\Leftrightarrow x=2-y\)
\(\Leftrightarrow xy=y\left(2-y\right)\)
\(\Leftrightarrow xy=2y-y^2\)
\(\Leftrightarrow xy=-y^2+2y-1+1\)
\(\Leftrightarrow xy=-\left(y-1\right)^2+1\)
Với mọi x ta có :
\(\left(y-1\right)^2\ge0\)
\(-\left(y-1\right)^2\le0\)
\(\Leftrightarrow-\left(y-1\right)^2+1\le1\)
\(\Leftrightarrow xy\le1\left(đpcm\right)\)
2/ Ta có :
\(E=\dfrac{x^2+8}{x^2+2}=\dfrac{x^2+2+6}{x^2+2}=\dfrac{x^2+2}{x^2+2}+\dfrac{6}{x^2+2}=1+\dfrac{6}{x^2+2}\)
Để E lớn nhất thì \(\dfrac{6}{x^2+2}\) đạt GTLN
\(\Leftrightarrow x^2+2\) đạt GTNN
\(\Leftrightarrow x^2+2=1\)
\(\Leftrightarrow x^2=-1\)
\(\Leftrightarrow x\in\varnothing\)
Vậy ....
1)Ta có:\(\left(x-y\right)^2\ge0\forall x,y\in R\)
\(\Rightarrow x^2-2xy+y^2\ge0\)
\(\Rightarrow x^2+2xy+y^2-4xy\ge0\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow4xy\le2^2=4\)
\(\Rightarrow xy\le1\left(đpcm\right)\)
2)Ta có:\(x^2\ge0\)
\(\Rightarrow x^2+2\ge2\)
\(\Rightarrow\dfrac{6}{x^2+2}\le\dfrac{6}{2}=3\)
Áp dụng: \(E=\dfrac{x^2+8}{x^2+2}\)
\(E=\dfrac{x^2+2+6}{x^2+2}\)
\(E=1+\dfrac{6}{x^2+2}\)
\(E\le1+3=4\)
\(\Rightarrow MAXE=4\Leftrightarrow x=0\)
Sai đề rồi nha bạn! Điều kiện: \(x^2+y^3\ge x^3+y^4\)
Sử dụng bất đẳng thức \(C-S,\) ta có:
\(\left(x^3+y^3\right)^2=\left(x\sqrt{x}.x\sqrt{x}+y^2.y\right)^2\le\left(x^3+y^4\right)\left(x^3+y^2\right)\le\left(x^2+y^3\right)\left(x^3+y^2\right)\)
\(\le\left(\frac{x^2+y^3+x^3+y^2}{2}\right)^2\)
\(\Rightarrow\) \(x^3+y^3\le\frac{x^2+y^3+x^3+y^2}{2}\) \(\Leftrightarrow\) \(x^3+y^3\le x^2+y^2\) \(\left(1\right)\)
Lại có: \(\left(x^2+y^2\right)^2=\left(x\sqrt{x}.\sqrt{x}+y\sqrt{y}.\sqrt{y}\right)^2\le\left(x^3+y^3\right)\left(x+y\right)\le\left(x^2+y^2\right)\left(x+y\right)\)
\(\Rightarrow\) \(x^2+y^2\le x+y\) \(\left(2\right)\)
Mặt khác, từ \(\left(2\right)\) với lưu ý rằng \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) \(\left(i\right)\)và \(x,y\in R^+\) , ta thu được:
\(x^2+y^2\le\sqrt{2\left(x^2+y^2\right)}\) \(\Leftrightarrow\) \(x^2+y^2\le2\) \(\left(3\right)\)
nên do đó, \(\left(i\right)\) suy ra \(x+y\le\sqrt{2.2}=2\) \(\left(4\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\) và \(\left(4\right)\) ta có đpcm
x+y=2
<=> x=2-y(1)
giả sử x*y≤1
<=>(2-y)y≤1
<=>y^2 - 2y +1≥0
<=> (y-1)^2≥0
<=>y≥1(2)
từ (1),(2)=> x*y≤1