K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

1/ Ta có :

\(x+y=2\)

\(\Leftrightarrow x=2-y\)

\(\Leftrightarrow xy=y\left(2-y\right)\)

\(\Leftrightarrow xy=2y-y^2\)

\(\Leftrightarrow xy=-y^2+2y-1+1\)

\(\Leftrightarrow xy=-\left(y-1\right)^2+1\)

Với mọi x ta có :

\(\left(y-1\right)^2\ge0\)

\(-\left(y-1\right)^2\le0\)

\(\Leftrightarrow-\left(y-1\right)^2+1\le1\)

\(\Leftrightarrow xy\le1\left(đpcm\right)\)

2/ Ta có :

\(E=\dfrac{x^2+8}{x^2+2}=\dfrac{x^2+2+6}{x^2+2}=\dfrac{x^2+2}{x^2+2}+\dfrac{6}{x^2+2}=1+\dfrac{6}{x^2+2}\)

Để E lớn nhất thì \(\dfrac{6}{x^2+2}\) đạt GTLN

\(\Leftrightarrow x^2+2\) đạt GTNN

\(\Leftrightarrow x^2+2=1\)

\(\Leftrightarrow x^2=-1\)

\(\Leftrightarrow x\in\varnothing\)

Vậy ....

28 tháng 3 2018

1)Ta có:\(\left(x-y\right)^2\ge0\forall x,y\in R\)

\(\Rightarrow x^2-2xy+y^2\ge0\)

\(\Rightarrow x^2+2xy+y^2-4xy\ge0\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow4xy\le2^2=4\)

\(\Rightarrow xy\le1\left(đpcm\right)\)

2)Ta có:\(x^2\ge0\)

\(\Rightarrow x^2+2\ge2\)

\(\Rightarrow\dfrac{6}{x^2+2}\le\dfrac{6}{2}=3\)

Áp dụng: \(E=\dfrac{x^2+8}{x^2+2}\)

\(E=\dfrac{x^2+2+6}{x^2+2}\)

\(E=1+\dfrac{6}{x^2+2}\)

\(E\le1+3=4\)

\(\Rightarrow MAXE=4\Leftrightarrow x=0\)

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi 2x-1=0

\(\Leftrightarrow2x=1\)

hay \(x=\dfrac{1}{2}\)

Vậy: Giá trị lớn nhất của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\dfrac{1}{2}\)

12 tháng 8 2018

a, B=2.(x+1)2+17

Vì (x+1)2 >= 0 Với mọi x

<=> 2.(x+1)2 >= 0

<=> 2.(x+1)2 >= 0 +17

<=> 2.(x+1)2 >=  17

Vậy GTNN là 17 

b, C ; D tương tự 

E= 10 - | x - 8 |

Vì | x-8 | >= 0 Với mọi x

<=> 10 - | x-8 | =< 10-0

<=>  10 - | x-8 | =< 10

Vậy GTLN là 10 

12 tháng 8 2018

a,B= 2. ( x+1)2 +17 >=17 với mọi x

Dấu bằng xảy ra khi ( x+1)2=0

                           => x +1 =0

                           => x= -1

Vậy B đạt GTNN bằng 17 <=> x=-1

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

26 tháng 8 2023

\(C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)

\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\)

mà \(-2\left|\dfrac{1}{3}x+4\right|\le0,\forall x\)

\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\le\dfrac{5}{3}\)

\(\Rightarrow GTLN\left(C\right)=\dfrac{5}{3}\left(tạix=-12\right)\)

2: B=|x+5|-|x-2|<=|x+5-x+2|=7

Dấu = xảy ra khi -5<=x<=2