Tim cac so x,y,z biet \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)va x2 va y2 va z2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !
\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'
Ta có : \(x-24=y\) hay cũng có thể viết \(x-y=24\)
Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) ( vì \(x-y=24\) )
\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)
\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)
Vậy \(x=42\) và \(y=18\)
nguyen tran phuong vy: vt sai kìa, phải là I don't know
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Mà \(x^2-2y^2+z^2=44\)
\(\Rightarrow\left(2k\right)^2+2\left(3k\right)^2+\left(5k\right)^2=44\)
\(\Leftrightarrow4k^2-18k^2+25k^2=44\)
\(\Leftrightarrow k^2\left(4-18+25\right)=44\)
\(\Leftrightarrow k^2.11=44\)
\(\Leftrightarrow k^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
+) Với \(k=2\)thì \(\hept{\begin{cases}x=2k=4\\y=3k=6\\z=5k=10\end{cases}}\)
+) Với \(k=-2\)thì \(\hept{\begin{cases}x=2k=-4\\y=3k=-6\\z=5k=-10\end{cases}}\)
Vậy ...
Đặt \(\frac{x-2}{6}=\frac{y+3}{9}=\frac{z-7}{10}=k\Rightarrow\hept{\begin{cases}x=6k+2\\y=9k-3\\z=10k+7\end{cases}}\)
Theo đề bài: x+y+z=106
<=>\(6k+2+9k-3+10k+7=106\)
<=>\(25k+6=106\)
<=> 25k = 100
<=> k = 4
=> \(\hept{\begin{cases}x=6.4+2=26\\y=9.4-3=33\\z=10.4+7=47\end{cases}}\)
Vậy .........................
a, x/4 = y/7
=> (x-y)/(4-7) = x/4 = y/7 có x - y = 9
=> 9/-3 = x/4 = y/7
=> x = -3.4 = -12 và y = -3.7 = -21
b, x/2 = y/5
=> 3x/6 = y/5
=> (3x-y)(6 - 5) = x/6 = y/5 mà 3x - y = 5
=> 5 = x/6 = y/5
=> x = 5.6 = 30 và y = 5.5 = 25
a) \(\frac{x}{4}=\frac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{7}=\frac{x-y}{4-7}=\frac{9}{-3}=-3\)
\(\Rightarrow\hept{\begin{cases}x=-3\cdot2=-6\\y=-3\cdot7=-21\end{cases}}\)
Ta có :\(\frac{3}{x}+\frac{4}{y}+\frac{5}{z}=6\)
\(\Leftrightarrow\frac{6}{2x}+\frac{12}{3y}+\frac{20}{4z}=6\)
\(\Leftrightarrow\frac{6}{2x}+\frac{12}{2x}+\frac{20}{2x}=6\)
\(\Leftrightarrow\frac{6+12+20}{2x}=6\)
\(\Leftrightarrow\frac{19}{x}=6\)
\(\Leftrightarrow x=\frac{19}{6}\)
\(\Leftrightarrow\frac{2}{3}x=\frac{2}{3}.\frac{19}{6}=\frac{19}{9}=y\)
\(\Leftrightarrow\frac{3}{4}y=\frac{3}{4}.\frac{19}{9}=\frac{19}{12}=z\)
Vậy \(\hept{\begin{cases}x=\frac{19}{6}\\y=\frac{19}{9}\\z=\frac{19}{12}\end{cases}}\)
a) Xem lại đề
b) Ta có: \(2x=4y=5z\)=> \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\) => \(\frac{2x}{1}=\frac{3y}{\frac{3}{4}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{1}=\frac{3y}{\frac{3}{4}}=\frac{z}{\frac{1}{5}}=\frac{2x-3y-z}{1-\frac{3}{4}-\frac{1}{5}}=\frac{1}{\frac{1}{20}}=20\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=20\\\frac{y}{\frac{1}{4}}=20\\\frac{z}{\frac{1}{5}}=20\end{cases}}\) => \(\hept{\begin{cases}x=20.\frac{1}{2}=10\\y=20.\frac{1}{4}=5\\z=20.\frac{1}{5}=4\end{cases}}\)
Vậy x = 10; y = 5 và z = 4
a)\(\frac{x}{5}=\frac{y}{6};\frac{y}{2}=\frac{z}{3}\)va \(x^3-2x^2y+z^3\)