Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x:y:z=9:7:8\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
..........
(You will know the answer. I believe in you ^^!)
x:y:z=9:7:8 => \(\frac{x}{9}=\frac{y}{7}=\frac{z}{8}\)và x+y+z = 240
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{8}=\frac{x+y+z}{9+7+8}=\frac{240}{24}=10\)
=> \(\frac{x}{9}=10\)=> x= 9x10= 90
\(\frac{y}{7}=10\)=> y= 7x10= 70
\(\frac{z}{8}=10\)=> z=8x10= 80
Vậy x= 90, y=70 và z= 80
\(\frac{x+2}{7}=\frac{y-3}{5}=\frac{z}{3}=\frac{x+2+y-3-z}{7+5-3}=\frac{x+y-z-1}{9}=\frac{-17-1}{9}=\frac{-18}{9}=-2\)
\(\frac{x+2}{7}=-2\Rightarrow x=-16\)
\(\frac{y-3}{5}=-2\Rightarrow y=-12\)
\(\frac{z}{3}=-2\Rightarrow z=-6\)
Đặt \(\frac{x-2}{6}=\frac{y+3}{9}=\frac{z-7}{10}=k\Rightarrow\hept{\begin{cases}x=6k+2\\y=9k-3\\z=10k+7\end{cases}}\)
Theo đề bài: x+y+z=106
<=>\(6k+2+9k-3+10k+7=106\)
<=>\(25k+6=106\)
<=> 25k = 100
<=> k = 4
=> \(\hept{\begin{cases}x=6.4+2=26\\y=9.4-3=33\\z=10.4+7=47\end{cases}}\)
Vậy .........................
Theo đề:
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Theo tính chất dãy tỉ số bằng nhau:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{x+y+z}{15+20+28}=\frac{98}{63}=\frac{14}{9}\)
\(\Rightarrow\frac{x}{15}=\frac{14}{9}\Rightarrow x=\frac{14.15}{9}=\frac{70}{3}\)
\(\Rightarrow\frac{y}{20}=\frac{14}{9}\Rightarrow y=\frac{14.20}{9}=\frac{280}{9}\)
\(\Rightarrow\frac{z}{28}=\frac{14}{9}\Rightarrow z=\frac{14.28}{9}=\frac{392}{9}\)
Vậy...
Ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{x}{3.5}=\frac{y}{4.5}\) HAY \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}=\frac{y}{5.4}=\frac{z}{7.4}\) HAY \(\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{x+y+z}{15+20+28}=\frac{98}{63}=\frac{14}{9}\)
Vậy \(x=\frac{14}{9}.15=70,3;y=\frac{14}{9}.20\approx31,11;z=\frac{14}{9}.28\approx43,5\)
x=6
y=14/3
z=-49/3