tìm x,y,z: x/3=y/5,y/6=z/7 và 3x+y-2z=42
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
x/ 3 = y/5 suy ra x/ 18 = y / 30
y/6 =z/7 suy ra y/30 = z/35
Tự làm nhé sau đó áp dụng bình thường ta có : x/18= y/30 = z/35
Ta có : \(\frac{x}{3}=\frac{y}{5}\Leftrightarrow5x=3y\Leftrightarrow x=\frac{3y}{5}\left(1\right)\)
\(\frac{y}{6}=\frac{z}{7}\Leftrightarrow6z=7y\Leftrightarrow z=\frac{7y}{6}\left(2\right)\)
Thay (1) và (2) vào biểu thức \(3x+y-2z=42\);ta được :
\(\frac{3y.3}{5}+y-\frac{7y.2}{6}=42\)
\(\Leftrightarrow54y+30y-70y=42.30\)
\(\Leftrightarrow14y=1260\Leftrightarrow y=90\)
Với \(y=90\Rightarrow x=\frac{3.90}{5}=54;z=\frac{7.90}{6}=105\)
Vậy ...
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{3x}{9}=\frac{y}{5}\Rightarrow\frac{3x}{54}=\frac{y}{30}\) (1)
\(\frac{y}{6}=\frac{z}{7}\Rightarrow\frac{y}{6}=\frac{2z}{14}\Rightarrow\frac{y}{30}=\frac{2z}{70}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{3x}{54}=\frac{y}{30}=\frac{2z}{70}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{3x}{54}=\frac{y}{30}=\frac{2z}{70}=\frac{3x+y-2z}{54+30-70}=\frac{42}{14}=3\)
Ta có:
\(\frac{3x}{54}=3\Rightarrow x=54\)
\(\frac{y}{30}=3\Rightarrow y=90\)
\(\frac{2z}{70}=3\Rightarrow z=105\)
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{3x}{9}=\frac{y}{5}\Rightarrow\frac{3x}{54}=\frac{y}{30}\)
\(\frac{y}{6}=\frac{z}{7}\Rightarrow\frac{y}{6}=\frac{2z}{14}\Rightarrow\frac{y}{30}=\frac{2z}{70}\)
=> \(\frac{3x}{54}=\frac{y}{30}=\frac{2z}{70}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , có :
\(\frac{3x}{54}=\frac{y}{30}=\frac{2z}{70}=\frac{3x+y-2z}{54+30-70}=\frac{42}{12}=3\)
\(\Rightarrow\begin{cases}\frac{3x}{54}=3\\\frac{y}{30}=3\\\frac{2z}{70}=3\end{cases}\) \(\Rightarrow\begin{cases}x=54\\y=90\\z=105\end{cases}\)
Vậy x = 54
y = 90
z = 105
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)
Do đó: x=6; y=9; z=15
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{6}\Rightarrow\frac{3x}{15}=\frac{2y}{6}=\frac{2z}{12}\)
áp dụng tính chất dãy tỉ số bn ta có
\(\frac{3x}{15}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y+2z}{15-6+12}=\frac{24}{21}=\frac{8}{7}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{40}{7}\\y=\frac{24}{7}\\z=\frac{48}{7}\end{cases}}\)
đề bài câu a xem lại nhé
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4};x+z=18\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\)\(x=3.2=6\)
\(y=3.3=9\)
\(z=3.4=12\)