K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

a) \(A=1+2+2^2+2^3+...+2^{60}\)

=>\(2A=2+2^2+2^3+2^4+...+2^{61}\)

=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{61}\right)-\left(1+2+2^2+2^3+...+2^{60}\right)\)

=>\(A=2^{61}-1\)

b)  \(B=1+3+3^2+3^3+...+3^{46}\)

=>\(3B=3+3^2+3^3+3^4+...+3^{47}\)

=>\(3B-B=\left(3+3^2+3^3+3^4+...+3^{47}\right)-\left(1+3+3^2+3^3+...+3^{46}\right)\)

=>\(2A=3^{47}-1\)

=>\(B=\frac{3^{47}-1}{2}\)

c) \(C=1+5^2+5^4+...+5^{200}\)

=>\(5^2C=5^2+5^4+5^6+...+5^{202}\)

=>\(25C=5^2+5^4+5^6+...+5^{202}\)

=>\(25C-C=\left(5^2+5^4+5^6+...+5^{202}\right)-\left(1+5^2+5^4+...+5^{200}\right)\)

=>\(24C=5^{202}-1\)

=>\(C=\frac{5^{202}-1}{24}\)

18 tháng 7 2016

a) A = \(1+2+2^2+2^3+...+2^{60}\)

2A = \(2.\left(1+2+2^2+2^3+...+2^{60}\right)\)

2A = \(2+2^2+2^3+2^4+...+2^{61}\)

2A - A = \(\left(2+2^2+2^3+2^4+...+2^{61}\right)\)\(\left(1+2+2^2+2^3+...+2^{60}\right)\)

A = \(2^{61}-1\)

b)B = \(1+3+3^2+3^3+...+3^{46}\)

3B = \(3.\left(1+3+3^2+3^3+...+3^{46}\right)\)

3B = \(3+3^2+3^3+3^4+...+3^{47}\)

3B - B = \(\left(3+3^2+3^3+3^4+...+3^{47}\right)\)\(\left(1+3+3^2+3^3+...+3^{46}\right)\)

2B = \(3^{47}-1\)

B = \(\left(3^{47}-1\right):2\)

12 tháng 10 2023

a: \(12+2^2+3^2+4^2+5^2\)

\(=12+4+9+16+25\)

\(=16+50=66\)

\(\left(1+2+3+4+5\right)^2=15^2=225\)

=>\(12+2^2+3^2+4^2+5^2< \left(1+2+3+4+5\right)^2\)

b: \(1^3+2^3+3^3+4^3=\left(1+2+3+4\right)^2< \left(1+2+3+4\right)^3\)

c: \(5^{202}=5^2\cdot5^{200}=25\cdot5^{200}>16\cdot5^{200}\)

d: \(18\cdot4^{500}=18\cdot2^{1000}\)

\(2^{1004}=2^4\cdot2^{1000}=16\cdot2^{1000}\)

=>\(18\cdot4^{500}>2^{1004}\)

e: \(2022\cdot2023^{2024}+2023^{2024}=2023^{2024}\left(2022+1\right)\)

\(=2023^{2025}\)

12 tháng 10 2023

dạ em nhầm ạ phần a) số 12 phải là 12

14 tháng 10 2023

\(A=2+2^2+...+2^{20}\)

\(2A=2^2+2^3+...+2^{21}\)

\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)

\(A=2^{21}-2\)

___________

\(B=5+5^2+...+5^{50}\)

\(5B=5^2+5^3+...+5^{51}\)

\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)

\(4B=5^{51}-5\)

\(B=\dfrac{5^{51}-5}{4}\)

___________

\(C=1+3+3^2+...+3^{100}\)

\(3C=3+3^2+...+3^{101}\)

\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)

\(2C=3^{101}-1\)

\(C=\dfrac{3^{101}-1}{2}\)

14 tháng 10 2023

2A= 2(2+22+23+...+219+220)

2A= 22+23+24+...+220+221

2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)

A=221-2

Vậy A=221-2

Làm tương tự nhee

a: Tổng các số hạng là:

\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)

Ta có: A+1=2x

\(\Leftrightarrow2x=24311\)

hay \(x=\dfrac{24311}{2}\)

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Bài 1:

$B=1+3+3^2+3^3+...+3^{100}$

$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$

$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$

$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$

$\Rightarrow B$ chia 4 dư 1.

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Bài 2:

$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$

$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$

$\Rightarrow C+5C=5-5^{2025}$

$6C=5-5^{2025}$

$C=\frac{5-5^{2025}}{6}$

2 tháng 10 2021

a) \(A=1+2+2^2+...+2^{50}\)

\(\Rightarrow2A=2+2^2+...+2^{51}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)

b) \(B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+...+3^{101}\)

\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)

\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)

c) \(C=5+5^2+...+5^{30}\)

\(\Rightarrow5C=5^2+5^3+...+5^{31}\)

\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)

\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)

d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)

\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)

\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)

27 tháng 10 2024

1990.1990 -1992.1988

 

10 tháng 10 2023

loading...  loading...  loading...  

24 tháng 12 2024

42:x=6

x= 42 :6 

X= 7

TH 2

36:x = 6

X = 36: 6

X= 6

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

a.

$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$

$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$

$\Rightarrow S=2^{2018}-1$

b.

$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$

$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$

$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
 

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Câu c, d bạn làm tương tự a,b. 

c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$

d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$

25 tháng 8 2021

trên đầu bài là giấu phẩy hay giấu nhân thế

 

25 tháng 8 2021

\(a,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,2^7=128,2^8=256,2^9=512,2^{10}=1024\)

\(b,3^2=9,3^3=27,3^4=81,3^5=243\)

\(c,4^2=16,4^3=64,4^4=256\)

\(d,5^2=25,5^3=125,5^4=625\)

 

7 tháng 8 2021

a) 4 ; 8 ; 16 ; 32 ; 64

b) 9 ; 27 ; 81 ; 243

c) 16 ; 64 ; 256

d) 25 ; 125

Chúc bạn học tốt!! ^^

a) \(2^2=4\)

\(2^3=8\)

\(2^4=16\)

\(2^5=32\)

\(2^6=64\)

b) \(3^2=3\)

\(3^3=27\)

\(3^4=81\)

\(3^5=243\)

c) \(4^2=16\)

\(4^3=64\)

\(4^4=256\)

d) \(5^2=25\)

\(5^3=125\)