tim x biet:
(2x-3)2 - (x+5)2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tim x,
a,2x^4-6x^3+x^2+6x-3=0
b,x^3-9x^2+26x+24=0
c, P= 2x^4 - 4x^3 + 6x^2 - 4x + 5 biet rang x^2 - x=7
a)\(2x^4-6x^3+x^2+6x-3=0\)
\(\Leftrightarrow2x^4-6x^3+3x^2-2x^2+6x-3=0\)
\(\Leftrightarrow x^2\left(2x^2-6x+3\right)-\left(2x^2-6x+3\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(2x^2-6x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(2x^2-6x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+1=0\\2x^2-6x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\\\Delta_{2x^2-6x+3}=\left(-6\right)^2-4\left(2.3\right)=12\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\\x_{1,2}=\frac{6\pm\sqrt{12}}{4}\end{array}\right.\)
b)\(x^3+9x^2+26x+24=0\)
\(\Leftrightarrow x^3+5x^2+6x+4x^2+20x+24=0\)
\(\Leftrightarrow x\left(x^2+5x+6\right)+4\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow\left(x^2+5x+6\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\\x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=-3\\x=-4\end{array}\right.\)
Ta có : \(\left(2x+3\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=-3\\x=7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=7\end{cases}}\)
\(a,\left(2x-10\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-10=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
Vậy .........
\(b,\left(x+5\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x^2-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=3\end{cases}}\)
Vậy ......
\(a,\left(2x-10\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-10=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=10\\x=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)
\(b,\left(x+5\right)\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x^2-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x^2=9\end{cases}\Rightarrow}\orbr{\begin{cases}x=-5\\x=3or-3\end{cases}}}\)
\(\Leftrightarrow\left(2x+3-2x+5\right)^2=x^2+6x+64\)
=>x^2+6x=0
=>x(x+6)=0
=>x=0 hoặc x=-6
(2x - 3)2 - (x + 5)2 = 0
=> (2x - 3 - x - 5).(2x - 3 + x + 5) = 0
=> (x - 8).(3x + 2) = 0
=> \(\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\)=> \(\orbr{\begin{cases}x=8\\3x=-2\end{cases}}\)=> \(\orbr{\begin{cases}x=8\\x=\frac{-2}{3}\end{cases}}\)
Vậy \(x\in\left\{8;\frac{-2}{3}\right\}\)