K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

Ta có ; \(4x^2+12x=9+7x\sqrt{4x-3}\)(ĐKXĐ : \(x\ge\frac{3}{4}\))

\(\Leftrightarrow4x^2+5x-9=7x\left(\sqrt{4x-3}-1\right)\)

Xét vế trái : \(4x^2+5x-9=4\left(x-1\right)\left(x+\frac{9}{4}\right)=\left[\left(4x-3\right)-1\right]\left(x+\frac{9}{4}\right)=\left(\sqrt{4x-3}-1\right)\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)\)

Suy ra phương trình : \(\left(\sqrt{4x-3}-1\right)\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)=7x\left(\sqrt{4x-3}-1\right)\)

\(\Leftrightarrow\left(\sqrt{4x-3}-1\right)\left[\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)-7x\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{4x-3}-1=0\\\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)-7x=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)(TMDK)

18 tháng 7 2016

Bài này liên hợp

ĐKXĐ: \(x\ge\frac{3}{4}\)

\(4x^2+12x-16-7x\sqrt{4x-3}+7=0\)

\(\Rightarrow\frac{\left(4x^2+12x\right)^2-16^2}{4x^2+12x+16}-\frac{\left(7x\sqrt{4x-3}\right)^2-7^2}{7x\sqrt{4x-3}+7}=0\)

\(\Rightarrow\frac{16\left(x-1\right)\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+16}-\frac{196x^3-147x^2-49}{7x\sqrt{4x-3}+7}=0\)

\(\Rightarrow\frac{16\left(x-1\right)\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{\left(x-1\right)\left(4x^2+x+1\right)49}{7x\sqrt{4x-3}+7}=0\)

\(\Rightarrow\left(x-1\right)\left[\frac{16\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{49\left(4x^2+x+1\right)}{7x\sqrt{4x-3}+7}\right]=0\)

Vì \(\frac{16\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{49\left(4x^2+x+1\right)}{7x\sqrt{4x-3}+7}>0\)

=> x - 1 = 0 => x = 1

                                                                 Vậy x = 1

30 tháng 8 2021

\(\sqrt{4x^2-12x+9}+3=2x\)

<=>\(\sqrt{4x^2-12x+9}=2x-3\)

<=>\(4x^2-12x+9=\left(2x-3\right)^2\)

<=>\(4x^2-12x+9=4x^2-12x+9\)

<=>\(4x^2-12x+9-4x^2+12x-9=0\)

<=>0=0( luôn đúng )

=> phương trình trên có vô số nghiệm

Vậy phương trình trên có vô số nghiệm

Ta có: \(\sqrt{4x^2-12x+9}+3=2x\)

\(\Leftrightarrow\left|2x-3\right|=2x-3\)

\(\Leftrightarrow2x-3\ge0\)

hay \(x\ge\dfrac{3}{2}\)

17 tháng 9 2021

\(1.\sqrt{16-8x+x^2}=4-x\)

\(\sqrt{\left(4-x\right)^2}=4-x\)

\(4-x-4+x=0\)

= 0 phương trình vô nghiệm.

\(2.\sqrt{4x^2-12x+9}=2x-3\)

\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)

\(2x-3-2x+3=0\)

= 0 phương trình vô nghiệm.

a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)

\(\Leftrightarrow\left|4-x\right|=4-x\)

hay \(x\le4\)

b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)

\(\Leftrightarrow\left|2x-3\right|=2x-3\)

hay \(x\ge\dfrac{3}{2}\)

1 tháng 5 2016

em ms học lớp 9 thôiChưa phân loại

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

1: Ta có: \(\sqrt{4x^2-12x+9}=3-2x\)

\(\Leftrightarrow\left(2x-3\right)^2=\left(3-2x\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(3-2x\right)^2=0\)

\(\Leftrightarrow\left[\left(2x-3\right)-\left(3-2x\right)\right]\left[\left(2x-3\right)+\left(3-2x\right)\right]=0\)

\(\Leftrightarrow\left(2x-3-3+2x\right)\left(2x-3+3-2x\right)=0\)

\(\Leftrightarrow\left(4x-6\right)\cdot0=0\)(luôn đúng)

Vậy: S={x|\(x\in R\)}

2) Ta có: \(\sqrt{x^2-2\cdot\sqrt{2}\cdot x+2}=\sqrt{9-4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{8-2\cdot2\sqrt{2}\cdot1+1}-\sqrt{1+2\cdot1\cdot\sqrt{2}+2}\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\left|\sqrt{8}-1\right|-\left|1+\sqrt{2}\right|\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{8}-1-1-\sqrt{2}\)

\(\Leftrightarrow\left|x-\sqrt{2}\right|=\sqrt{2}-2\)(*)

Trường hợp 1: \(x\ge\sqrt{2}\)

(*)\(\Leftrightarrow x-\sqrt{2}=\sqrt{2}-2\)

\(\Leftrightarrow x-\sqrt{2}-\sqrt{2}+2=0\)

\(\Leftrightarrow x-2\sqrt{2}+2=0\)

\(\Leftrightarrow x=2\sqrt{2}-2\)(loại)

Trường hợp 2: \(x< \sqrt{2}\)

(*)\(\Leftrightarrow\sqrt{2}-x=\sqrt{2}-2\)

\(\Leftrightarrow\sqrt{2}-x-\sqrt{2}+2=0\)

\(\Leftrightarrow2-x=0\)

hay x=2(loại)

Vậy: S=∅

16 tháng 12 2020

\(1.4x^2-12x+9=9-12x+4x^2\)

\(0x=0\)

Pt tm với mọi x

14 tháng 7 2019

\(a,\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)\(ĐKXĐ:x\ge-\frac{5}{7}\)

\(\Leftrightarrow9x-7=7x+5\)

\(\Leftrightarrow9x-7x=5+7\)

\(\Leftrightarrow2x=12\)

\(\Leftrightarrow x=6\)

14 tháng 7 2019

\(b,\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3.\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}\left(2+1-1\right)=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

\(\Leftrightarrow x=9\)