K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=521⋅6+526⋅11+...+5226⋅31

=5(51⋅6+56⋅11+...+526⋅31)

=5(1−16+16−111+...+126−131)

5 tháng 5 2018

Có: \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)

\(=5.\left(\frac{6-1}{1.6}+\frac{11-6}{6.11}+...+\frac{31-26}{26.31}\right)\)

\(=5.\left(\frac{6}{1.6}-\frac{1}{1.6}+\frac{11}{6.11}-\frac{6}{6.11}+...+\frac{31}{26.31}-\frac{26}{26.31}\right)\)

\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5.\left(1-\frac{1}{31}\right)\)

\(=5.\frac{30}{31}=\frac{150}{31}>\frac{31}{31}=1\)

\(\Rightarrow A>1\)

5 tháng 5 2018

Ta có: A=\(\frac{5^2}{1.6}\)+\(\frac{5^2}{6.11}\)+...+\(\frac{5^2}{26.31}\)

=5.(\(\frac{5}{1.6}\)+\(\frac{5}{6.11}\)+...+\(\frac{5}{26.31}\))

=5.(1-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)+...+\(\frac{1}{26}\)-\(\frac{1}{30}\))

=5.(1-\(\frac{1}{30}\))

=5.\(\frac{29}{30}\)

=\(\frac{29}{6}\)>1

Hay A>1

=> đpcm

Sửa đề \(\dfrac{5^3}{1.6}\rightarrow\dfrac{5^2}{1.6}\) 

Giải:

\(\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+...+\dfrac{5^2}{26.31}\) 

\(=5.\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+...+\dfrac{5}{26.31}\right)\) 

\(=5.\left(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\) 

\(=5.\left(\dfrac{1}{1}-\dfrac{1}{31}\right)\) 

\(=5.\dfrac{30}{31}\) 

\(=\dfrac{150}{31}\)

1​/a. cho 2 số :A = 10 mũ​ 2004 + 1 phần​ 10 mũ​ 2005 +1.       B= 10 mũ​ 2005 + 1 phần​ 10 mũ​ 2006 + 1.              So sánh​ A và Bb. chứng​ minh A= 1+ 1 phần​ 2 mũ​ 2 +1 phần​ 3 mũ​ 2 + 1 phần​ 4 mũ​ 2 +...........+ 1 phần​ 100 mũ 2 < 2c. tìm​ số​ nguyên​ x đ​ể​ phân​ số​ 3x+7 phần​ x-1 là​ số​ nguyênd. tìm​ số​ nguyê​n đ​ể​ phân​ số​ n-2 phần​ n+5 có​ giá​...
Đọc tiếp

1​/a. cho 2 số :A = 10 mũ​ 2004 + 1 phần​ 10 mũ​ 2005 +1.       B= 10 mũ​ 2005 + 1 phần​ 10 mũ​ 2006 + 1.              So sánh​ A và B

b. chứng​ minh A= 1+ 1 phần​ 2 mũ​ 2 +1 phần​ 3 mũ​ 2 + 1 phần​ 4 mũ​ 2 +...........+ 1 phần​ 100 mũ 2 < 2

c. tìm​ số​ nguyên​ x đ​ể​ phân​ số​ 3x+7 phần​ x-1 là​ số​ nguyên

d. tìm​ số​ nguyê​n đ​ể​ phân​ số​ n-2 phần​ n+5 có​ giá​ trị​ nguyên

Bài 2:

a. tính​ tổng​ 20 số​ hạng​ đ​ầu​ tiên​ của​ dãy​ sau : 1 phần​ 1.2 , 1 phần​ 2.3 , 1 phần 3.4 , ...

b. tính​ tổng​ 5 số​ hạng đ​ầu​ tiên​ của​ dãy​ số​ sau : 5 phần​ 6 , 5 phần​ 66 , 5 phần​ 176 , 5 phần 336 ,.......

c. cho biểu​ thức​ : A = 5 mũ​ 2 phần​ 1.6 + 5 mũ​ 2 phần​ 6.11 +...+ 5 mũ​ 2 phần​ 26.31.       Chứng​ tỏ A > 1

2
4 tháng 5 2018
1/a, -Ta có: $B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$ -Vậy: B
4 tháng 5 2018

1/a,

-Ta có: 

$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$

-Vậy: B<A

b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$

$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$

$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$

$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$

$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$

21 tháng 4 2017

\(A=\dfrac{5^2}{1\cdot6}+\dfrac{5^2}{6\cdot11}+...+\dfrac{5^2}{26\cdot31}\)

\(=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{26\cdot31}\right)\)

\(=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)

\(=5\left(1-\dfrac{1}{31}\right)=5\cdot\dfrac{30}{31}=\dfrac{150}{31}\)

21 tháng 4 2017

bằng \(\dfrac{5}{3}\)

9 tháng 1 2017

\(\frac{25}{5^x}=5^x\)\(\Rightarrow x=1\)

19 tháng 3 2017

\(Q=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)

\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)

\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5\left(1-\frac{1}{31}\right)\)

\(=5\cdot\frac{30}{31}=\frac{150}{31}\)

19 tháng 3 2017

Bạn nhân 2 lên rồi áp dụng \(\frac{5}{a\times\left(a+5\right)}=\frac{1}{a}-\frac{1}{a+5}\) thì sẽ còn lại là    2Q=1-1/31 =30/31 nên Q=30/62

13 tháng 5 2022

`A = ( 5^2 )/( 1*6)+(5^2)/(6*11)+.....+(5^2)/(26*31)`

   `= 5*(  5/( 1*6)+ 5/(6*11)+.....+5/(26*31))`

   `= 5*( 1 - 1/6 + 1/6 - 1/11 +....+1/26 - 1/31 )`

   `= 5*( 1 - 1/31 )`

   `= 5 * 30/31 = 150/31` 

13 tháng 5 2022

\(A=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+...+\dfrac{5^2}{26.31}\)

\(=5.\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+...+\dfrac{5}{26.31}\right)\)

\(=5.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)

\(=5.\left(1-\dfrac{1}{31}\right)=5.\dfrac{30}{31}=\dfrac{150}{31}\)

 

20 tháng 3 2017

E=\(\frac{10}{1\cdot6}\) +\(\frac{10}{6\cdot11}\) +\(\frac{10}{11\cdot16}\) +\(\frac{10}{16\cdot21}\) +\(\frac{10}{21\cdot26}\) +\(\frac{10}{26\cdot31}\)                                                                                      =  5*(1-\(\frac{1}{31}\) )                                                                                                                                                                                 =5*\(\frac{30}{31}\)        =\(\frac{150}{31}\)