tìm x,y: x/3=y/7 và 3x-2y=20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{20}=\frac{y}{9}=\frac{z}{6}=\frac{x-2y+4z}{20-2\cdot9+4\cdot6}=\frac{13}{26}=\frac12\)
=>\(\begin{cases}x=20\cdot\frac12=10\\ y=9\cdot\frac12=\frac92\\ z=6\cdot\frac12=3\end{cases}\)
2: \(\frac{x}{3}=\frac{y}{4}\)
=>\(\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{7}\)
=>\(\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
mà 2x+3y-z=186
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2\cdot15+3\cdot20-28}=\frac{186}{62}=3\)
=>\(\begin{cases}x=3\cdot15=45\\ y=3\cdot20=60\\ z=3\cdot28=84\end{cases}\)
3: \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)
=>\(\frac{x}{2}=\frac{y}{2,5}=\frac{z}{1,75}\)
mà 3x+5y+7z=123
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{2,5}=\frac{z}{1,75}=\frac{3x+5y+7z}{3\cdot2+5\cdot2,5+7\cdot1,75}=\frac{123}{30,75}=4\)
=>\(\begin{cases}x=4\cdot2=8\\ y=4\cdot2,5=10\\ z=4\cdot1,75=7\end{cases}\)
4: \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)
=>\(\frac{x}{2}=\frac{y}{\frac32}=\frac{z}{\frac43}\)
Đặt \(\frac{x}{2}=\frac{y}{\frac32}=\frac{z}{\frac43}=k\)
=>\(x=2k;y=\frac32k;z=\frac43k\)
xyz=-108
=>\(2k\cdot\frac32k\cdot\frac43k=-108\)
=>\(4k^3=-108\)
=>\(k^3=-27\)
=>k=-3
=>\(\begin{cases}x=2\cdot\left(-3\right)=-6\\ y=\frac32\cdot\left(-3\right)=-\frac92\\ z=\frac43\cdot\left(-3\right)=-4\end{cases}\)

Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)

a) Ta có : \(\frac{x}{y}=\frac{4}{9}\Rightarrow\frac{x}{4}=\frac{y}{9}\Rightarrow\frac{3x}{12}=\frac{2y}{18}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{12}=\frac{2y}{18}=\frac{3x-2y}{12-18}=\frac{12}{-6}=-2\)
=> \(\hept{\begin{cases}x=\left(-2\right)\cdot4=-8\\y=\left(-2\right)\cdot9=-18\end{cases}}\)
b) Ta có : \(\frac{y}{4}=\frac{x}{-3}\Rightarrow\frac{x}{-3}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-3}=\frac{y}{4}=\frac{x-y}{\left(-3\right)-4}=\frac{7}{-7}=-1\)
=> \(\hept{\begin{cases}x=\left(-1\right)\cdot\left(-3\right)=3\\y=\left(-1\right)\cdot4=-4\end{cases}}\)
c) Ta có : \(x=-2y\Rightarrow\frac{x}{-2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-2}=\frac{y}{1}=\frac{x-y}{-2-1}=\frac{-3}{-3}=1\)
=> \(\hept{\begin{cases}x=1\cdot\left(-2\right)=-2\\y=1\end{cases}}\)
d) Ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}=\frac{2x+y-z}{4+5-7}=\frac{2}{2}=1\)
=> \(\hept{\begin{cases}x=1\cdot2=2\\y=1\cdot5=5\\z=1\cdot7=7\end{cases}}\)

( x - 7 ) ( 2y + 3 ) = 32
<=> ( 2x - 14 ) y + 3x - 21 = 32
<=> ( 2x - 14) y + 3x - 32 - 21 = 0
<=> ( 2x - 14 ) y + 3x - 53 = 0
<=> ( 2x - 7) = 0
<=> 2x=2.7
<=> x = 7
<=> 2y + 3 = 0
<=> 2y = -3
<=> y = -1,5
Có \(2xy+3x-2y=20\)
\(\Rightarrow\left(2xy-2y\right)+3x=20\)
\(\Rightarrow2y\left(x-1\right)+3x=20\)
\(\Rightarrow2y\left(x-1\right)+3x-3=20-3\)
\(\Rightarrow2y\left(x-1\right)+3\left(x-1\right)=17\)
\(\Rightarrow\left(2y+3\right)\left(x-1\right)=17\)
\(\Rightarrow\hept{\begin{cases}2y+3\inƯ\left(17\right)\\x-1\inƯ\left(17\right)\end{cases}}\)
Ta có bảng giá trị sau:
2y+3 | 1 | 17 | -17 | -1 |
x-1 | 17 | 1 | -1 | -17 |
x | 18 | 2 | 0 | -16 |
y | -1 | 7 | -10 | -2 |
Vậy các cặp (x;y) thỏa mãn là (18;-1),(2;7),(0;-10);(-16;-2)

giải
3x=2y => y/3=x/2
Có: x+y=20
Áp dụng tính chất dãy tỉ số bằng nhau
x/2=y/3=> x+y/2+3= 20/5= 4
Ta có
x= 2 x 4= 8
y= 3 x 4= 12
Tự kết luận:vv
Ta có:\(\frac{x}{3}=\frac{y}{7}=\frac{3x}{9}=\frac{2y}{14}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{3x}{9}=\frac{2y}{14}=\frac{3x-2y}{9-14}=\frac{20}{-5}=-4\)
\(\Rightarrow\hept{\begin{cases}x=-12\\y=-28\end{cases}}\)
Ta có : \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng dãy tỉ số bằng nhau :
\(\frac{x}{3}=\frac{y}{7}=\frac{3x-2y}{3.3-2.7}=\frac{20}{-5}=-4\)
\(\Rightarrow x=-4.3=-12\)
\(\Rightarrow y=-4.7=-28\)
Vậy x = -12 và y = -28