\(.S=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{2009}+\sqrt{2011}}\)
Tính S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết ngược lại đề bài nha rồi trục căn thức
\(2S=\sqrt{2013}-\sqrt{2011}+\sqrt{2011}-\sqrt{2009}+....+\sqrt{7}-\sqrt{5}+\sqrt{5}-\sqrt{3}\)
\(S=\frac{\sqrt{2013}-\sqrt{3}}{2}\)
......................?
mik ko biết
mong bn thông cảm
nha ................
Đặt: \(\hept{\begin{cases}\sqrt{x-2009}=a\\\sqrt{y-2010}=b\\\sqrt{z-2011}=c\end{cases}}\)
Ta có: \(\frac{1}{a}-\frac{1}{a^2}+\frac{1}{b}-\frac{1}{b^2}+\frac{1}{c}-\frac{1}{c^2}-\frac{3}{4}=0\)
\(\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{c^2}-\frac{1}{c}+\frac{3}{4}=0\)
\(\Leftrightarrow\left(\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}\right)+\left(\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}\right)+\left(\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow a=b=c=\frac{1}{2}\)
Thay vào tìm x;y;z
Đặt: \(\hept{\begin{cases}\sqrt{x-2009}=a\\\sqrt{y-2010}=b\\\sqrt{z-2011}=c\end{cases}}\)
Ta có: \frac{1}{a}-\frac{1}{a^2}+\frac{1}{b}-\frac{1}{b^2}+\frac{1}{c}-\frac{1}{c^2}-\frac{3}{4}=0a1−a21+b1−b21+c1−c21−43=0
\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{c^2}-\frac{1}{c}+\frac{3}{4}=0⇔a21−a1+b21−b1+c21−c1+43=0
\Leftrightarrow\left(\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}\right)+\left(\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}\right)+\left(\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}\right)=0⇔(a21−a1+41)+(b21−b1+41)+(c21−c1+41)=0
\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0⇔(a1−21)2+(b1−21)2+(c1−21)2=0
\Leftrightarrow a=b=c=\frac{1}{2}⇔a=b=c=21
Thay vào tìm x;y;z
Xét tử số có dạng : \(\frac{1}{\left(2n+1\right)\left(2n+2\right)\left(2n+3\right)}=\frac{1}{4}\left[\frac{1}{\left(2n+1\right)\left(2n+2\right)}-\frac{1}{\left(2n+2\right)\left(2n+3\right)}\right]\) với \(n\in N\)
Ta có : \(\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{2005.2007.2009}\)
\(=\frac{1}{4}.\left(\frac{1}{1.3}-\frac{1}{3.5}\right)+\frac{1}{4}.\left(\frac{1}{3.5}-\frac{1}{5.7}\right)+\frac{1}{4}\left(\frac{1}{5.7}-\frac{1}{7.9}\right)+...+\frac{1}{4}\left(\frac{1}{2005.2007}-\frac{1}{2007.2009}\right)\)
\(=\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{2005.2007}-\frac{1}{2007.2009}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{2007.2009}\right)\)
Xét mẫu số có dạng : \(\frac{1}{\left(2n+1\right)\sqrt{2n+3}+\left(2n+3\right)\sqrt{2n+1}}=\frac{1}{\sqrt{2n+1}.\sqrt{2n+3}\left(\sqrt{2n+1}+\sqrt{2n+3}\right)}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{\sqrt{2n+1}.\sqrt{2n+3}\left[\left(2n+3\right)-\left(2n+1\right)\right]}=\frac{1}{2}.\left(\frac{1}{\sqrt{2n+1}}-\frac{1}{\sqrt{2n+3}}\right)\)với \(n\in N\)
Áp dụng : \(\frac{1}{1\sqrt{3}+3\sqrt{1}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+...+\frac{1}{2007\sqrt{2009}+2009\sqrt{2007}}\)
\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}+...+\frac{1}{\sqrt{2007}}-\frac{1}{\sqrt{2009}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{2009}}\right)\)
Suy ra : \(M=\frac{\frac{1}{4}\left(\frac{1}{3}-\frac{1}{2007.2009}\right)}{\frac{1}{2}\left(1-\frac{1}{\sqrt{2009}}\right)}\)
Tới đây bài toán đã gọn hơn , bạn tự tính nhé :)
Thưa bn mk đã làm ra nhưng không biết có đúng không. Xem nhá:
Ta có:
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2001}-1}{y-2001}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\Leftrightarrow"\frac{1}{\sqrt{x-2009}}-\frac{1}{2}"^2+\)
\("\frac{1}{\sqrt{y-2010}}-\frac{1}{2}"^2-"\frac{1}{\sqrt{z-2011}}-\frac{1}{2}"^2=0\)
\(\Rightarrow x=2013;y=2014;z=2015\)
P/s: Bn thay Ngoặc Kép thành Ngoặc Đơn nhé
Bạn ơi cái này mk chỉ ghi cách làm và ct thôi nha
đây dùng hàng đẳng thức (a-b)(a+b)=a^2-b^2
còn kia là công thức toán lớp 6
\(\frac{1}{\sqrt{3}+\sqrt{1}}=\frac{\sqrt{3}-\sqrt{1}}{\left(\sqrt{3}+\sqrt{1}\right)\left(\sqrt{3}-\sqrt{1}\right)}=\frac{\sqrt{3}-\sqrt{1}}{\sqrt{3^2}-\sqrt{1^2}}=\frac{1}{2}\left(\sqrt{3}-\sqrt{1}\right)\)
Tương tự:
\(\frac{1}{\sqrt{5}+\sqrt{3}}=\frac{1}{2}\left(\sqrt{5}-\sqrt{3}\right)\)
.....
\(\frac{1}{\sqrt{2019}+\sqrt{2017}}=\frac{1}{2}\left(\sqrt{2019}-\sqrt{2017}\right)\)
Cộng các vế với nhau ta được:
\(S=\frac{1}{2}\left(\sqrt{2019}-\sqrt{1}\right)=\frac{1}{2}\left(\sqrt{2019}-1\right)\)
\(=\frac{\sqrt{3}-\sqrt{1}}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+...+\frac{\sqrt{2011}-\sqrt{2009}}{2011-2009}=\frac{\sqrt{2011}-1}{2}\)