sử dụng bđt cô si
cmr (a+4b)(1+4ab)>=16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng cô si ta có
a³/b + ab ≥ 2a²
b³/c + bc ≥ 2b²
c³/a + ac ≥ 2c²
+ + + 3 cái lại
=> a³/b + b³/c + c³/a ≥ 2a² + 2b² + 2c² - ab - ac - bc
mặt khác ta có
ab + bc + ac ≤ a² + b² + c² (cái này chứng minh dễ dàng nhé)
áp dung BĐT cô si \(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)
vì a+b+c=1 => dpcm
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>=9\)
<=>1+1+1 +\(\frac{a}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{b}{c}+\frac{c}{b}\)>=9 (*)
áp đụng cô si
\(\frac{a}{b}+\frac{b}{a}>=2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
tương tự
\(\frac{a}{c}+\frac{c}{a}>=2\)
\(\frac{b}{c}+\frac{c}{b}>=2\)
=> (*) đúng Mà a+b+c=1
=> đpcm
\(3x^3-6x^3y+3xy=3x\left(x^2-2x^2y+y\right)\)
\(a^2-4ab+4b^2-16=\left(a-2b\right)^2-4^2=\left(a-2b-4\right)\left(a-2b+4\right)\)
biết là sử dụng BĐT này rùi thì áp dụng mà giải hỏi làm chi :D
a/ Áp dụng BĐT Cô-si cho các số dương ta được
abc+bca≥2√abc.bca=2cabc+bca≥2abc.bca=2c
Tương tự
abc+cab≥2babc+cab≥2b
bca+cab≥2abca+cab≥2a
Cộng các vế của BĐT
2(abc+bca+cab)≥2(1a+1b+1c)2(abc+bca+cab)≥2(1a+1b+1c)
↔abc+bca+cab≥1a+1b+1c↔abc+bca+cab≥1a+1b+1c
b/ Áp dụng BĐT Cô-si cho các số dương ta được
abc+bca≥2√abc.bca=2babc+bca≥2abc.bca=2b
Tương tự
abc+cab≥2aabc+cab≥2a
bca+cab≥2cbca+cab≥2c
Cộng các vế của BĐT
2(abc+bca+cab)≥2(a+b+c)2(abc+bca+cab)≥2(a+b+c)
↔abc+bca+cab≥a+b+c
Bđt cosi
\(a+4b\ge4\sqrt{ab}\) (1)
\(1+4ab\ge4\sqrt{ab}\)(2)
NHân vế với vế của (1) và (2)ta được Đpcm
Dấu = khi \(a=1;b=\frac{1}{4}\)