K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

a ) Xét \(\Delta\)MAB và \(\Delta\)MDC có : 

  • MA = MD ( giả thiết )
  • Góc AMB = Góc DMC ( đối đỉnh )
  • BM = MC ( vì M là trung điểm BC )

\(\Rightarrow\)\(\Delta\)MAB = \(\Delta\)MDC ( c - g - c )

\(\Rightarrow\)AB = CD ( 2 cạnh tương ứng )

b ) Xét \(\Delta\)ABC và \(\Delta\)DCB có :

  • AB = CD ( chứng minh trên )
  • BC : cạnh chung
  • Góc ABC = Góc DCB ( \(\Delta\)MAB = \(\Delta\)MDC ) 

\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)DCB ( c - g - c )

\(\Rightarrow\)BÂC = Góc CDB = 90° ( 2 góc tương ứng )

c ) Xét \(\Delta\)BAE có : BH là đường cao, đồng thời cũng là trung tuyến.

\(\Rightarrow\)\(\Delta\)BAE cân tại B

\(\Rightarrow\)AB = BE 

Mà AB = CD ( chứng minh trên )

\(\Rightarrow\)BE = CD

3 tháng 2 2022

a. Xét 2\(\Delta\): ABE và DEC có:

\(\left\{{}\begin{matrix}AE=ED\left(gt\right)\\\widehat{AEB}=\widehat{CED}\left(đối.đỉnh\right)\\BE=EC\left(gt\right)\end{matrix}\right.\)

Vậy \(\Delta ABE=\Delta DEC\left(c.g.c\right)\)

b. Do \(\Delta ABE=\Delta DEC\)

\(\Rightarrow\widehat{ABE}=\widehat{DCE}\)

\(\Rightarrow\) AB // CD

c. Ta có: AE là điểm nối từ đỉnh tam giác vuông tới trung điểm cạnh huyền

\(\Rightarrow AE=ED=BE=EC\)

\(\Rightarrow AD=BC\)

Xét 2\(\Delta\): ACD và ABC có:

\(\left\{{}\begin{matrix}AC.chung\\CD=AB\left(theo.câu.a\right)\\AD=BC\left(CMT\right)\end{matrix}\right.\)

Vậy \(\Delta ACD=\Delta ABC\left(c.c.c\right)\)

d. Xét tương tự với 2\(\Delta\) ABC và ABD ta được: \(\Delta ABC=\Delta ABD\left(c.c.c\right)\)

\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)

Mà: \(\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{ABD}=90^o\)

Vậy tam giác CBC là tam giác vuông

3 tháng 2 2022

a)Xét tam giác AEB và tam giác DEC có

         AE=DE(gt)

         góc AEB = góc DEC ( đối đỉnh)

         EB=EC(E là trung điểm BC)

Vậy tam giác AEB = tam giác DEC(c.g.c)

b từ 2 tg trên = nhau 

=>góc ABE = góc ECD

=>AB//CD

Vậy AB//CD

c)Xét tam giác ACD và tam giác DBA có

 góc ACD = góc DBA(= 90 độ)

 AB=CD(2 tg phần a = nhau)

 AD chung

Vậy tam giác ACD = tam giác DBA( cạnh huyền,cạnh góc vuông)

d)từ 2 tam giác trên bằng nhau 

=> góc BAC = góc BDC

=> góc BDC = 90 độ

=> tam giác DBC vuông tại D