Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Hình bạn tự vẽ nhé.
a) Vì D là trung điểm của BC (gt)
nên BD = CD
Xét \(\Delta ABD\) và \(\Delta ACD\) có:
\(\hept{\begin{cases}BD=CD\left(cmt\right)\\ADchung\\AB=AC\left(gt\right)\end{cases}}\Rightarrow\Delta ABD=\Delta ACD\left(c.c.c\right)\) (đpcm)
b) Ta có: \(\Delta ABD=\Delta ACD\) (cmt)
\(\Rightarrow\widehat{BAD}=\widehat{CAD}\) (2 góc tương ứng)
Xét \(\Delta ADE\) và \(\Delta ADF\) có:
\(\hept{\begin{cases}ADchung\\\widehat{BAD}=\widehat{CAD}\left(cmt\right)\\AE=AF\left(gt\right)\end{cases}}\Rightarrow\Delta ADE=\Delta ADF\left(c.g.c\right)\)
\(\Rightarrow\widehat{AED}=\widehat{AFD}\) (2 góc tương ứng)
Mà \(\widehat{AED}=90^o\) (vì \(DE\perp AB\) tại E)
\(\Rightarrow\widehat{AFD}=90^o\) (đpcm)
c) Ta có: AB = AC (gt)
\(\Rightarrow\Delta ABC\) cân tại A (dấu hiệu nhận biết)
\(\Rightarrow\widehat{B}=\frac{180^o-\widehat{BAC}}{2}\) (định lí) (1)
Lại có: AE = AF
\(\Rightarrow\Delta AEF\) cân tại A (dấu hiệu nhận biết)
\(\Rightarrow\widehat{AEF}=\frac{180^o-\widehat{EAF}}{2}\) (định lí)
hay \(\widehat{AEF}=\frac{180^o-\widehat{BAC}}{2}\) (2)
Từ (1), (2)
\(\Rightarrow\widehat{AEF}=\widehat{B}\)
Mà 2 góc này ở bị trí đồng vị
\(\Rightarrow EF//BC\) (dấu hiệu nhận biết) (đpcm)
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
c: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
=>\(\widehat{DCB}=\widehat{EBC}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC