Tìm x để biểu thức sau có giá trị dương (x-3).(x-7)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để M có giá trị dương thì (x-3) và (x+7) phải cùng dấu
Ta xét 2 trường hợp:
TH1: x-3 > 0 và x+7 > 0
\(\Leftrightarrow\) x > 3 và x > -7
\(\Leftrightarrow x>3\) (1)
TH2: x-3 < 0 và x+7 < 0
\(\Leftrightarrow\) x < 3 và x < -7
\(\Leftrightarrow x<-7\) (2)
Từ (1) và (2) ta suy ra x > 3 và x < -7 thì M > 0
\(M>0\Leftrightarrow\left(x-3\right)\left(x+7\right)>0\)
=>x-3 và x-7 cùng dấu
+)\(\int^{x-3>0}_{x-7>0}\Leftrightarrow\int^{x>3}_{x>7}\Leftrightarrow x>7\left(1\right)\)
+)\(\int^{x-3<0}_{x-7<0}\Leftrightarrow\int^{x<3}_{x<7}\Leftrightarrow x<3\left(2\right)\)
Từ (1) và (2) suy ra x>7 và x<3 thì thỏa mãn M>0
giá trị dương hay giá trị nguyên dương vậy bạn? hai loại khác nhau nhé
Để \(M=\frac{7-x}{x-3}\) có giá trị dương <=> 7 - x và x - 3 cùng dấu
TH1 : \(\hept{\begin{cases}7-x< 0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>7\\x< 3\end{cases}}}\) (loại)
TH2 : \(\hept{\begin{cases}7-x>0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}\Rightarrow}x=4;5;6}\) (nhận)
Vậy \(x=4;5;6\)
a) Ta có: A = x^2+4x
=>A= x(×+4)
Để A có gtri dương=>x và ( x+4) cùng dấu
Xét x và x+4 có gtri dương
=>x lớn hơn 0 (1)
Xét x và x+4 có gtri âm
=>x bé hơn -4. (2)
Từ (1) và (2) ta suy ra
Để A có gtri dương thì x phải lớn hơn 0 và bé hơn -4
b)
Ta có: B = (x-3)(x+7)
=> B = (x+(-3)) (x+7)
=> B = x^2+(-3)x+7x+(-21)
=> B =x(x+5)+(-21)
Để B có gtri dương => x(x+5)>21
Xét x = 1 => B=1(1+5)=6< 21( ko t/mãn)
Tương tự vs 2 ta cũng thấy ko thỏa mãn
Xét x =3=>B=3(3+5)=24>21( t/mãn)
Vậy để B có gtri dương thì x> 3
Còn câu c) thì tịttttttttttt..........(°¤°)
C=(1/2-x).(1/3-x) (1)
x | \(-\infty\) 1/3 1/2 \(+\infty\) |
1/2-x | - - 0 + |
1/3-x | - 0 + + |
(1/2-x).(1/3-x) | + 0 - 0 + |
(1) <=> x<1/3 hoac x>1/2
Vay voi x<1/3 va x>1/2 thi bieu thuc da cho co gia tri duong
Để A có giá trị không dương hay \(A\le0\)
\(=>\left(x^2+1\right)\left(x-2\right)\left(x+3\right)\le0\)
\(=>\left(x-2\right)\left(x+3\right)\le0\) ( Vì : \(x^2+1\ge1>0\forall x\) )
\(=>\left\{{}\begin{matrix}x-2\le0\\x+3\ge0\end{matrix}\right.\) ( Vì : \(x+3>x-2\forall x\) )
\(=>\left\{{}\begin{matrix}x\le2\\x\ge-3\end{matrix}\right.\)
\(=>-3\le x\le2\)
A = (\(x^2\) + 1).(\(x-2\)).(\(x+3\)). Lập bảng xét dấu ta có:
\(x\) | \(-3\) 2 |
\(x^2\) + 1 | + + + + |
\(x\) - 2 | - - 0 + |
\(x\) + 3 | - 0 + + |
A | + 0 - 0 + |
Theo bảng trên ta có: -3 ≤ \(x\) ≤ 2
để (x-3).(x-7) dương thì
+)x<3 để 2 số cùng là âm
+)x>7 để 2 số cùng là dương
vì ( x - 3 ) . ( x - 7 )
mà x sao cho biểu thức là số dương
=> x > 3, 7
vậy x = { 8 , 9 , 10 , 11 , 12 , . . . }