K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

Để M có giá trị dương thì (x-3) và (x+7) phải cùng dấu

Ta xét 2 trường hợp:

TH1: x-3 > 0 và x+7 > 0 

\(\Leftrightarrow\) x > 3 và x > -7

\(\Leftrightarrow x>3\) (1)

TH2: x-3 < 0 và x+7 < 0 

\(\Leftrightarrow\) x < 3 và x < -7

\(\Leftrightarrow x<-7\) (2)

Từ (1) và (2) ta suy ra x > 3 và x < -7 thì M > 0 

15 tháng 5 2016

\(M>0\Leftrightarrow\left(x-3\right)\left(x+7\right)>0\)

=>x-3 và x-7 cùng dấu

+)\(\int^{x-3>0}_{x-7>0}\Leftrightarrow\int^{x>3}_{x>7}\Leftrightarrow x>7\left(1\right)\)

+)\(\int^{x-3<0}_{x-7<0}\Leftrightarrow\int^{x<3}_{x<7}\Leftrightarrow x<3\left(2\right)\)

Từ (1) và (2) suy ra x>7 và x<3 thì thỏa mãn M>0

22 tháng 12 2018

a) Dễ thấy \(x^2\)luôn dương vậy để A dương thì \(4x\ge0\)

\(\Leftrightarrow x\ge0\)

b) \(B=\left(x-3\right)\left(x+7\right)\)dương khi :

TH1: \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}\Rightarrow}x>3}\)

TH2: \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}\Rightarrow}x< -7}\)

c) Tương tự câu b)

19 tháng 6 2017

a) Ta có ; \(x^2\ge0\forall x\in R\)

Nên A dương khi 4x \(\ge0\forall x\in R\) 

=> \(x\ge0\)

Vậy A dương khi \(x\ge0\)

6 tháng 5 2020

Để a dương \(< =>\left(x-1\right)\left(x-2\right)-\left(x-3\right)>0\)

\(< =>x^2-2x-x+2-x+3>0\)

\(< =>x^2-4x+5>0\)

\(< =>x\left(x-4\right)>5\)

\(< =>x>6\)

Vậy để a dương thì x > 6

Quân , a lm cái j vậy ?

\(A=\frac{\left(x-1\right)\left(x-2\right)}{x-3}\)

Để A dương => A > 0 

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-2\right)}{x-3}>0\)

\(\Leftrightarrow\frac{x^2-3x+2}{x-3}>0\)

\(\Leftrightarrow\frac{x^2-3x+2}{x-3}>\frac{0}{x-3}\)

\(\Leftrightarrow x^2-3x+2>0\Leftrightarrow1< x< 2\)

\(\Leftrightarrow x-3>0\Leftrightarrow3>x\)

23 tháng 7 2019

Để C dương thì xảy ra các trường hợp:

\(\orbr{\begin{cases}\frac{1}{2}-x>0;\frac{1}{3}-x>0\\\frac{1}{2}-x< 0;\frac{1}{3}-x< 0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x>\frac{1}{2}\end{cases}}\)

23 tháng 7 2019

Để C > 0 

=> \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}}\)hoặc \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}}\)

Nếu \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< \frac{1}{3}\end{cases}\Rightarrow}x< \frac{1}{3}}\)

Nếu \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{1}{3}\end{cases}\Rightarrow}x>\frac{1}{2}}\)

Vậy \(C>0\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x>\frac{1}{2}\end{cases}}\)

31 tháng 7 2016

a) x2 + 5x = x(x + 5) < 0 khi x và x + 5 khác dấu mà x < x + 5 nên x < 0 ; x + 5 > 0

=> -5 < x < 0 (x\(\in Q\))

b) 3(2x + 3)(3x - 5) < 0 khi 2x + 3 và 3x - 5 khác dấu.Ta có :

\(\hept{\begin{cases}2x+3< 0\Rightarrow2x< -3\Rightarrow x< \frac{-3}{2}\\3x-5>0\Rightarrow3x>5\Rightarrow x>\frac{5}{3}\end{cases}}\)(vô lý)

-\(\hept{\begin{cases}2x+3>0\Rightarrow2x>-3\Rightarrow x>\frac{-3}{2}\\3x-5< 0\Rightarrow3x< 5\Rightarrow x< \frac{5}{3}\end{cases}}\)=> \(\frac{-3}{2}< x< \frac{5}{3}\left(x\in Q\right)\)

\(x^2+5x< 0\)

\(\Rightarrow x\left(x+5\right)< 0\)

Th1 : \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>-5\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< -5\end{cases}}}\)

Câu b tương tự nha