\(\text{Tìm các giá trị của x để biểu thức sau có giá trị dương:}\)

               ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

Để C dương thì xảy ra các trường hợp:

\(\orbr{\begin{cases}\frac{1}{2}-x>0;\frac{1}{3}-x>0\\\frac{1}{2}-x< 0;\frac{1}{3}-x< 0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x>\frac{1}{2}\end{cases}}\)

23 tháng 7 2019

Để C > 0 

=> \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}}\)hoặc \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}}\)

Nếu \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< \frac{1}{3}\end{cases}\Rightarrow}x< \frac{1}{3}}\)

Nếu \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{1}{3}\end{cases}\Rightarrow}x>\frac{1}{2}}\)

Vậy \(C>0\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x>\frac{1}{2}\end{cases}}\)

22 tháng 12 2018

a) Dễ thấy \(x^2\)luôn dương vậy để A dương thì \(4x\ge0\)

\(\Leftrightarrow x\ge0\)

b) \(B=\left(x-3\right)\left(x+7\right)\)dương khi :

TH1: \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}\Rightarrow}x>3}\)

TH2: \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}\Rightarrow}x< -7}\)

c) Tương tự câu b)

19 tháng 6 2017

a) Ta có ; \(x^2\ge0\forall x\in R\)

Nên A dương khi 4x \(\ge0\forall x\in R\) 

=> \(x\ge0\)

Vậy A dương khi \(x\ge0\)

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)