Tìm GTNN của biểu thức C=(x+1)^2+(y-1/3)^2-10
các bạn giúp mìh với!!!!!
tặng 1 like cho bạn trả lời đúng
thanks!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chú ý:1/2=1/2^1
BIỂU THỨC A có:2018-1+1=2018 số hạng
A=(1/2^1+1/2^2018)+(1/2^2+1/2^2017)+...+(1/2^1008+1/2^1011)+(1/2^1009+1/2^1010)
A= 1 + 1 + ... + 1 + 1 (có 2018:2=1009 số 1)
A= 1009
MÌNH GIẢI ĐÊN ĐÂY PHÀN YÊU CẦU CHỨNG MINH BẠN GHI RÕ HỘ MÌNH RỒI MÌNH SẼ GIÚP BẠN TIẾP
\(C=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-\frac{1}{3}\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\)
=>\(A=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\)
Vậy A đạt GTNN khi \(A=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10=-10\)
<=>\(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-\frac{1}{3}\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+1=0\\y-\frac{1}{3}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=\frac{1}{3}\end{cases}}}\)
Vậy A đạt GTNN là -10 khi x=-1 và x=1/3
Có những kí hiệu mình dùng trong bài mà bạn ko hiểu thì phải hỏi mình nhé :)