tim x,y
a) x.(x-y)=3/10
b)y.(x-y)=-3/50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x*(x-y)-y*(x-y)=3/10-(-3/50)=3/10+3/50=9/25
(x-y)*(x-y)=9/25
(x-y)^2=9/25
x-y=3/5 hoac x-y=-3/5
Tu đo tim x,y
Bài 1:
a.
$\frac{2}{3}\times \frac{x}{y}=\frac{8}{15}$
$\frac{x}{y}=\frac{8}{15}: \frac{2}{3}=\frac{4}{5}$
b.
$\frac{x}{y}: \frac{3}{4}=\frac{2}{5}$
$\frac{x}{y}=\frac{3}{4}\times \frac{2}{5}=\frac{3}{10}$
c.
$\frac{3}{5}: \frac{x}{y}=\frac{4}{7}$
$\frac{x}{y}=\frac{3}{5}: \frac{4}{7}=\frac{21}{20}$
Bài 2:
Chiều dài hình chữ nhật là:
$\frac{3}{5}: \frac{3}{4}=\frac{4}{5}$ (m)
Chu vi hình chữ nhật:
$2\times (\frac{3}{4}+\frac{4}{5})=\frac{31}{10}$ (m)
a)
\(\frac{x}{18}=\frac{y}{15},x-y=-30\)
\(\frac{x}{18}=\frac{y}{15}\)
\(\frac{x}{18}-\frac{y}{15}=0\)
\(-\frac{6y-5x}{90}=0\)
\(6y-5x=0\)
\(x-y=-30\)
\(-\left(y-x-30\right)=0\)
\(y-x-30=0\)
\(\Rightarrow x=-180;y=-150\)
Để giải phương trình này, chúng ta có thể sử dụng công thức khai triển đa thức. Với phương trình A) x^3 + y^3 = 6xy - 8, ta có thể thay thế x^3 và y^3 bằng (x + y)(x^2 - xy + y^2) và tiếp tục giải từ đó. Tương tự, chúng ta có thể áp dụng công thức khai triển đa thức cho các phương trình B) và C) để tìm giá trị của x và y.
Trả lời:
A = ( 2x - 7 )4
Ta có: \(\left(2x-7\right)^4\ge0\forall x\)
Dấu "=" xảy ra khi 2x - 7 = 0 <=> 2x = 7 <=> x = 7/2
Vậy GTNN của A = 0 khi x = 7/2
B = ( x + 1 )10 + ( y - 2 )20 + 7
Ta có: \(\left(x+1\right)^{10}\ge0\forall x;\left(y-2\right)^{20}\ge0\forall y\)
\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}\ge0\forall x;y\)
\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}+7\ge7\forall x;y\)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = -1 và y - 2 = 0 <=> y = 2
Vậy GTNN của B = 7 khi x = -1 và y = 2
C = ( 3x - 4 )100 + ( 5y + 1 )50 - 20
Ta có: \(\left(3x-4\right)^{100}\ge0\forall x;\left(5y+1\right)^{50}\ge0\forall y\)
\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}\ge0\forall x;y\)
\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}-20\ge-20\forall x;y\)
Dấu "=" xảy ra khi 3x - 4 = 0 <=> x = 4/3 và 5y + 1 = 0 <=> y = -1/5
Vậy GTNN của C = -20 khi x = 4/3 và y = -1/5
D = ( 2x + 3 )20 + ( 3y - 4 )10 + 1000
Ta có: \(\left(2x+3\right)^{20}\ge0\forall x;\left(3y-4\right)^{10}\ge0\forall y\)
\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}\ge0\forall x;y\)
\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}+100^0\ge1\forall x;y\)
Dấu "=" xảy ra khi 2x + 3 = 0 <=> x = -3/2 và 3y - 4 = 0 <=> y = 4/3
Vậy GTNN của D = 1 khi x = -3/2 và y = 4/3
E = ( x - y )50 + ( y - 2 )60 + 3
Ta có: \(\left(x-y\right)^{50}\ge0\forall x;y\); \(\left(y-2\right)^{60}\ge0\forall y\)
\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}\ge0\forall x;y\)
\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}+3\ge3\forall x;y\)
Dấu "=" xảy ra khi x - y = 0 <=> x = y và y - 2 = 0 <=> y = 2
Vậy GTNN của E = 3 khi x = y = 2
x(x-y)=3/10
y(x-y)=-3/10
=>(x+y)(x-y)=0
=>x2-y2=0
=> x=-y
=>x(x-y)=x.2x=2x2=3/10
=>x2=3/20