Cho hình bình hành ABCD. I là trung điểm của AB, DI cắt CB tại E.
a) CM : Tứ giác ADBE là hình bình hành
b) CM :BI là đường trung bình của Tam giác EDC.
LÀM ƠN CỨU MÌNH VỚI ONLINE MATH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔIAD và ΔIBE có
góc AID=góc BIE
IA=IB
góc IAD=góc IBE
=>ΔIAD=ΔIBE
=>AD=BE
Xét tứ giác ADBE có
AD//BE
AD=BE
=>ADBE là hình bình hành
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
a:
AB\(\perp\)AC
AB//CD
Do đó: CA\(\perp\)CD
Xét ΔABI vuông tại A và ΔCDI vuông tại C có
IA=IC
\(\widehat{AIB}=\widehat{CID}\)
Do đó:ΔABI=ΔCDI
=>AB=CD và IB=ID
Xét tứ giác ABCD có
AB//CD
AB=CD
Do đó: ABCD là hình bình hành
b: HK\(\perp\)AB
AC\(\perp\)AB
Do đó: HK//AC
Xét tứ giác AHKI có
AH//KI
AI//HK
Do đó: AHKI là hình bình hành
mà \(\widehat{IAH}=90^0\)
nên AHKI là hình chữ nhật
=>AK=HI
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Xét ΔANB có
E là trung điểm của AB
EM//NB
Do đó: M là trung điểm của AN
=>AM=MN(1)
Xét ΔMCD có
F là trung điểm của CD
FN//DM
Do đó: N là trung điểm của CM
Suy ra: NC=NM(2)
Từ (1) và (2) suy ra AM=MN=NC
a: Sửa đề: BHCK
Xét tứ giác BHCK có
M là trung điểm chung của BC và HK
=>BHCK là hình bình hành
b: BHCK là hình bình hành
=>BH//CK và BK//CH
=>BK vuông góc BA và CK vuông góc CA
c: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp đường tròn đường kính BC
=>ME=MF
=>ΔMEF cân tại M
a: Xét tứ giác AMCN có
AM//CN
AN//CM
Do đó: AMCN là hình bình hành