K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề: BHCK

Xét tứ giác BHCK có

M là trung điểm chung của BC và HK

=>BHCK là hình bình hành

b: BHCK là hình bình hành

=>BH//CK và BK//CH

=>BK vuông góc BA và CK vuông góc CA

c: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp đường tròn đường kính BC

=>ME=MF

=>ΔMEF cân tại M

12 tháng 11 2021

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

13 tháng 11 2021

Còn câu b nữa bạn ơi!

 

17 tháng 10 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

18 tháng 10 2021

a) Tứ giác BHCKBHCK có 2 đường chéo HKHK và BCBC cắt nhau tại trung điểm MM của mỗi đường

Do đó tứ giác BHCKBHCK là hình bình hành

 

b) Tứ giác BHCKBHCK là hình bình hành

⇒BK∥CH⇒BK∥CH

Mà CH⊥ABCH⊥AB

⇒BK⊥AB⇒BK⊥AB (đpcm)

 

c) Gọi J=BC∩HIJ=BC∩HI

Xét ΔBHIΔBHI có BJBJ vừa là đường trung tuyến, vừa là đường cao nên ΔBHIΔBHI cân đỉnh B

⇒BJ⇒BJ là đường phân giác của ˆHBIHBI^

⇒ˆIBC=ˆHBC⇒IBC^=HBC^

mà ˆHBC=ˆKCBHBC^=KCB^ (hai góc ở vị trí so le trong do BH//CK)

Từ 2 điều trên ⇒ˆIBC=ˆKCB⇒IBC^=KCB^ (*)

ΔHIKΔHIK có JMJM là đường trung bình của tam giác, nên JM//IKJM//IK

Hay BC//IK⇒BIKCBC//IK⇒BIKC là hình thang (**)

Từ (*) và (**) suy ra BIKCBIKC là hình thang cân.

 

d) Tứ giác GHCKGHCK có GK∥HCGK∥HC

Do đó GHCKGHCK là hình thang

Để GHCKGHCK là hình thang cân thì ˆGHC=ˆKCHGHC^=KCH^

mà ˆKCH=ˆHBKKCH^=HBK^ (hai góc cùng bù ˆBHCBHC^ do BHCKBHCK là hình bình hành)

Từ hai điều trên ⇒ˆGHC=ˆHBK⇒GHC^=HBK^

ΔHJC:ˆHCJ=90o−ˆGHCΔHJC:HCJ^=90o−GHC^ (tổng ba góc trong tam giác bằng 180o180o)

ˆABH=ˆABK−ˆHBK=90o−ˆHBKABH^=ABK^−HBK^=90o−HBK^ (BK⊥ABBK⊥AB)

Từ 3 điều trên suy ra ˆHCJ=ˆABHHCJ^=ABH^

Mà ΔBCF:ˆFBC=90o−ˆHCJΔBCF:FBC^=90o−HCJ^

ΔABE:ˆEAB=90o−ˆABHΔABE:EAB^=90o−ABH^

Từ 3 điều trên ⇒ˆFBC=ˆEAB⇒FBC^=EAB^

hay ˆCBA=ˆCABCBA^=CAB^

⇒ΔABC⇒ΔABC cân đỉnh CC

ΔABCΔABC cân đỉnh CC thì GHCKGHCK là hình thang cân.

18 tháng 10 2021

Cảm ơn bạn

15 tháng 11 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

15 tháng 11 2021

b) Ta có: Tứ giác BHCK là hình bình hành.

=> HC//BK mà H thuộc FC (gt)

=> FC//BK(1)

FC vuông góc với AB(gt)(2)

Từ (1)(2) suy ra AB vuông góc với  BK

Tương tự:

Có: tứ giác BHCK là hbh(cmt)

=> BH//KC mà H thuộc EB(gt)

=> BE// KC mà BE vuông góc với AC=> KC vuông góc với  AC

23 tháng 12 2020

a) Xét tứ giác BHCK có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: BHCK là hình bình hành(cmt)

nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)

Ta có: BK//CH(cmt)

nên BK//CF

Ta có: BK//CF(cmt)

CF⊥AB(gt)

Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)

Ta có: CK//BH(cmt)

nên CK//BE

Ta có: CK//BE(cmt)

BE⊥AC(gt)

Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)

c) Vì H và I đối xứng nhau qua BC

nên BC là đường trung trực của HI

⇔C nằm trên đường trung trực của HI

hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BHCK là hình bình hành(cmt)

nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)

Từ (1) và (2) suy ra CI=BK

Gọi O là giao điểm của BC và HI

mà BC là đường trung trực của HI

nên O là trung điểm của HI

Xét ΔHIK có 

O là trung điểm của HI(cmt)

M là trung điểm của HK(H và K đối xứng nhau qua M)

Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)

⇒OM//IK(Định lí 2 về đường trung bình của tam giác)

hay IK//BC

Xét tứ giác BIKC có IK//BC(cmt)

nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)

Hình thang BIKC(IK//BC) có IC=BK(cmt)

nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

20 tháng 3 2021

a) Xét tứ giác BHCK có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: BHCK là hình bình hành(cmt)

nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)

Ta có: BK//CH(cmt)

nên BK//CF

Ta có: BK//CF(cmt)

CF⊥AB(gt)

Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)

Ta có: CK//BH(cmt)

nên CK//BE

Ta có: CK//BE(cmt)

BE⊥AC(gt)

Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)

c) Vì H và I đối xứng nhau qua BC

nên BC là đường trung trực của HI

⇔C nằm trên đường trung trực của HI

hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BHCK là hình bình hành(cmt)

nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)

Từ (1) và (2) suy ra CI=BK

Gọi O là giao điểm của BC và HI

mà BC là đường trung trực của HI

nên O là trung điểm của HI

Xét ΔHIK có 

O là trung điểm của HI(cmt)

M là trung điểm của HK(H và K đối xứng nhau qua M)

Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)

⇒OM//IK(Định lí 2 về đường trung bình của tam giác)

hay IK//BC

Xét tứ giác BIKC có IK//BC(cmt)

nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)

Hình thang BIKC(IK//BC) có IC=BK(cmt)

nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)