căn1-a >1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ 0<1<2<3<...<100 suy ra 0 < căn 1<căn 2<...< căn 100 = 10. suy ra 1/căn 1>1/căn 2>...>1/căn 100( sử dụng quy tắc so ánh 2 phân số cùng tử va mẫu đều dương) . suy ra a> 100 nhân 1/10=10 suy ra 1/căn 1+1/căn 2+...+1/căn 100>10 ( dpcm)
Đặt \(\sqrt{1+x}=a;\sqrt{1-x}=b\), \(a,b>0\)
Áp dụng BĐT AG-GM:
\(\Rightarrow A=\dfrac{a^2+4b^2}{ab}\ge\dfrac{2\sqrt{a^2\cdot4b^2}}{ab}=4\)
Dấu "=" \(\Leftrightarrow1+x=4\left(1-x\right)\Leftrightarrow x=\dfrac{3}{5}\left(N\right)\)
Tick hộ nha
a) \(\sqrt[]{1-4a+4a^2}\)
\(=\sqrt[]{\left(1-2a\right)^2}\)
\(=\left|1-2a\right|\)
\(=\left[{}\begin{matrix}1-2a\left(a\le\dfrac{1}{2}\right)\\2a-1\left(a>\dfrac{1}{2}\right)\end{matrix}\right.\)
b) \(x-2y-\sqrt[]{x^2-4xy+4y^2}\)
\(=x-2y-\sqrt[]{\left(x-2y\right)^2}\)
\(=x-2y-\left|x-2y\right|\)
\(=\left[{}\begin{matrix}x-2y-x+2y\left(x\ge2y\right)\\x-2y+x-2y\left(x< 2y\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}0\left(x\ge2y\right)\\2x-4y\left(x< 2y\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}0\left(x\ge2y\right)\\2\left(x-2y\right)\left(x< 2y\right)\end{matrix}\right.\)
a: ĐKXĐ: 2x+5>=0 và 1-x>=0
=>-5/2<=x<=1
PT =>2x+5=1-x
=>3x=-4
=>x=-4/3(nhận)
b: ĐKXĐ: x^2-x>=0 và 3-x>=0
=>x<=3 và (x>=1 hoặc x<=0)
=>x<=0 hoặc (1<=x<=3)
PT =>x^2-x=3-x
=>x^2=3
=>x=căn 3(nhận) hoặc x=-căn 3(nhận)
c: ĐKXĐ: 2x^2-3>=0 và 4x-3>=0
=>x>=3/4 và x^2>=3/2
=>x>=3/4 và \(\left[{}\begin{matrix}x>=\dfrac{\sqrt{6}}{4}\\x< =\dfrac{-\sqrt{6}}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x>=\dfrac{3}{4}\\x< =-\dfrac{\sqrt{6}}{4}\end{matrix}\right.\)
PT =>2x^2-3=4x-3
=>2x^2-4x=0
=>2x(x-2)=0
=>x=0(loại) hoặc x=2(nhận)
\(\sqrt{2x+5}=\sqrt{1-x}\) (ĐK: \(-\dfrac{5}{2}\le x\le1\))
\(\Leftrightarrow2x+5=1-x\)
\(\Leftrightarrow2x+x=1-5\)
\(\Leftrightarrow3x=-4\)
\(\Leftrightarrow x=-\dfrac{4}{3}\left(tm\right)\)
b) \(\sqrt{x^2-x}=\sqrt{3-x}\) (ĐK: \(\left[{}\begin{matrix}1\le x\le3\\x\le0\end{matrix}\right.\))
\(\Leftrightarrow x^2-x=3-x\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\pm\sqrt{3}\left(tm\right)\)
c) \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (ĐK: \(x\ge\dfrac{\sqrt{6}}{2}\))
\(\Leftrightarrow2x^2-3=4x-3\)
\(\Leftrightarrow2x^2=4x\)
\(\Leftrightarrow x^2=2x\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
\(\sqrt{1-a}>1\)
\(\Rightarrow1-a>1^2\)
\(\Rightarrow1-a>1\)
\(\Rightarrow a< 1-1=0\)
\(\sqrt{1}-a>1\)
\(\Rightarrow1-a>1\)
\(\Rightarrow a< 1-1=0\)