K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2015

cá này là bình phương thếu.k thể phân tích thành nhân tử dc nữa

2 tháng 10 2021

\(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1\)

\(=\left(x^2-1\right)\left(x-3\right)^2-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x-3-1\right)\left(x-3+1\right)\)

\(=\left(x^2-1\right)\left(x-4\right)\left(x-2\right)\)

26 tháng 7 2017

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

1 tháng 8 2017

\(x^8+x+1\)

\(=\left(x^8-x^5\right)+\left(x^5-x^2\right)+\left(x^2+x+1\right)\)

\(x^5\left(x^3-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^5\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^6-x^5\right)\left(x^2+x+1\right)+\left(x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

6 tháng 11 2021

\(x^2+7x+12=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)

\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)

31 tháng 7 2021

\(x-\sqrt{x}-2\\ =x+\sqrt{x}-2\sqrt{x}-2\\ =\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)\\ =\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)

`#3107.101107`

`x(y - 1) + 3(y - 1)`

`= (x + 3)(y - 1)`

25 tháng 10 2023

x(y-1)+3(y-1)

=(y-1)(x+3)

Giải thích: đặt y-1 ra làm chung .... đa thức còn x+3

\(\dfrac{1}{4}x^2+2xy+4y^2=\left(\dfrac{1}{2}x+2y\right)^2\)

26 tháng 8 2017

//////

22 tháng 8 2017

mk chưa lên lp 8

16 tháng 8 2023

\(x^4-x^2+2x+2\)

\(=x^4-2x^3+2x^2+2x^3-4x^2+4x+x^2-2x+2\)

\(=\left(x^4-2x^3+2x^2\right)+\left(2x^3-4x^2+4x\right)+\left(x^2-2x+2\right)\)

\(=x^2\left(x^2-2x+2\right)+2x\left(x^2-2x+2\right)+\left(x^2-2x+2\right)\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+1\right)\)

\(=\left(x^2-2x+2\right)\left(x+1\right)^2\)

16 tháng 8 2023

\(x^4-x^2+2x+2\)

\(=x^2\left(x^2-1\right)+2\left(x+1\right)\)

\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)

\(=\left(x+1\right)\left(x^3-x^2+2\right)\)