Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D.So sánh AD và DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
a: Xét ΔBAD vuông tai A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
b: ta có: AD=HD
mà HD<DC
nen AD<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tạiA có
BH=BA
góc HBK chung
Do đó:ΔBHK=ΔBAC
Suy ra BK=BC
hay ΔBKC cân tại B
Kẻ \(DI\perp BC\left(I\in BC\right)\)
\(\Delta ABD=\Delta IBD\left(ch-gn\right)\Rightarrow AD=ID\) (2 cạnh tương ứng)
Tâm giác DIC vuông tại I nên DI < DC (cạnh góc vuông luôn nhỏ hơn cạnh huyền)
Do đó AD < DC
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH và DA=DH
Ta có: BA=BH
nên B nằm trên đường trung trực của AH\(\left(1\right)\)
Ta có: DA=DH
nên D nằm trên đường trung trực của AH\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AH
b: Ta có: AD=DH
mà DH<DC
nên AD<DC
Kẻ \(DH\perp BC\left(H\in BC\right)\)
△ABD và △HBD có:
\(\widehat{BAD}=\widehat{BHD}=90^o\\ BD:\text{cạnh chung}\\ \widehat{ABD}=\widehat{HBD}\)
\(\Rightarrow\text{△ABD = △HBD (cạnh huyền - góc nhọn)}\\ \Rightarrow AD=HD\)
Mà △HCD vuông tại H nên DC > DH (cạnh huyền lớn hơn cạnh góc vuông)
Từ đó suy ra DC > AD