Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tai A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
b: ta có: AD=HD
mà HD<DC
nen AD<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tạiA có
BH=BA
góc HBK chung
Do đó:ΔBHK=ΔBAC
Suy ra BK=BC
hay ΔBKC cân tại B
Kẻ \(DI\perp BC\left(I\in BC\right)\)
\(\Delta ABD=\Delta IBD\left(ch-gn\right)\Rightarrow AD=ID\) (2 cạnh tương ứng)
Tâm giác DIC vuông tại I nên DI < DC (cạnh góc vuông luôn nhỏ hơn cạnh huyền)
Do đó AD < DC
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH và DA=DH
Ta có: BA=BH
nên B nằm trên đường trung trực của AH\(\left(1\right)\)
Ta có: DA=DH
nên D nằm trên đường trung trực của AH\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AH
b: Ta có: AD=DH
mà DH<DC
nên AD<DC
Từ D kẻ đường thẳng vuông góc với BC cắt BC tại E
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
BD cạnh huyền chung
A B D ^ = E B D ^ (BD là tia phân giác của góc B)
Khi đó: Δ A B D = Δ E B D (cạnh huyền góc nhọn)
Suy ra: AD = DE (hai cạnh tương ứng) (1)
Lại có tam giác DEC vuông tại E có DC là cạnh huyền
Suy ra DC > DE (trong tam giác vuông, cạnh đối diện với góc vuông là cạnh lớn nhất) (2)
Từ (1) và (2) suy ra DC > AD hay AD < DC
Vậy A đúng, B, C, D sai.
Chọn đáp án A
Kẻ \(DH\perp BC\left(H\in BC\right)\)
△ABD và △HBD có:
\(\widehat{BAD}=\widehat{BHD}=90^o\\ BD:\text{cạnh chung}\\ \widehat{ABD}=\widehat{HBD}\)
\(\Rightarrow\text{△ABD = △HBD (cạnh huyền - góc nhọn)}\\ \Rightarrow AD=HD\)
Mà △HCD vuông tại H nên DC > DH (cạnh huyền lớn hơn cạnh góc vuông)
Từ đó suy ra DC > AD