22+24+26+...+2208 chia cho 9 dư mấy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
Bài 1
a, cm : A = 165 + 215 ⋮ 3
A = 165 + 215
A = (24)5 + 215
A = 220 + 215
A = 215.(25 + 1)
A = 215. 33 ⋮ 3 (đpcm)
b,cm : B = 88 + 220 ⋮ 17
B = (23)8 + 220
B = 216 + 220
B = 216.(1 + 24)
B = 216. 17 ⋮ 17 (đpcm)
c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1
C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)
C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)
C = 1 + 42+...+ 22016.42
C = 1 + 42.(20+...+22016)
42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm
Ví dụ với 5 số hạng:
2
22
+ 222
2222
22222
2 x 5 + 2x 4 x 10 + 2 x 3 x 100 + 2 x 2 x 1000 + 2 x 1 x 10000
2 x (5+4x10+3x100+2x1000+1x10000)
2x [5x100 + (5-1)x101 + (5-2) x102 + (5-3) x103 + (5-4) x104]
Ta có công thức: Nếu số hạng là các chữ số n và có m số hạng:
n x (mx100 + (m-1)x101 + (m-2) x102 +……….+2 x 10m-2 + 1x10m-1
Tính tổng trên:
2 x (10x1 + 9x10 + 8x100 + 7x1000 + 6x10000 + 5x100000 + …+ 1x10000000000) =
2 x (10+90+800+7000+60000+500000+4000000+30000000+200000000+1000000000) =
2 x 1234567900 = 2 469 135 800
chọn bộ 14 số sau :
2,22,222,............,22......222 (14 chữ số 2)
nhưng đây chỉ là giả đề thôi
bài này thiếu đề bài đáng lẽ ở số cuối cùng 22.....2222 phải cho bt có bao nhiêu chữ số 2 mik đã học dạng toán này r
bạn nên xem lại đề bài r sửa lại nội dung đi
nếu ko có thứ đó ko làm đc bài đâu
A chia 9 dư 1 nha
chia 9 dư 1
tính tổng dãy só ra tìm chữ số tận cùng nhé
chúc bn học giỏi
`A=2^{0}+2^{1}+2^{2}+....+2^{99}`
`=(1+2+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8}+2^{9})+......+(2^{95}+2^{96}+2^{97}+2^{97}+2^{99})`
`=(1+2+2^{2}+2^{3}+2^{4})+2^{5}(1+2+2^{2}+2^{3}+2^{4})+.....+2^{95}(1+2+2^{2}+2^{3}+2^{4})`
`=31+2^{5}.31+....+2^{95}.31`
`=31(1+2^{5}+....+2^{95})\vdots 31`
\(A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
\(=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)