Chứng tỏ rằng:
a)S=5198+5199+5200chia hết cho 31
giải dùm mình nha!mai nình nộp bài rồi!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, C = 5 + 51 + 52 + 53 + ... + 520
C= 5 ( 1 + 5 + 52 + ...+ 519 )
=> C chia hết cho 5
b, C = 5 + 51 + 52 + 53 + ... + 520
C= ( 5+52) + ( 53 + 54 ) + ...+ ( 519 + 520)
C= 5(1+5) + 53 (1+5) + 55 (1+5) + ...+ 519(1+5)
C= 5.6 + 53.6 + 55.6 + ...+ 519 . 6
=> C chia hết cho 6
CMR : C = 5 + 52+ 53 + ... + 520 \(⋮\)5 và 6
Chia hết cho 5
Vì trong 1 tổng có 1 số chia hết cho m thì cả tổng đó chia hết cho m => C \(⋮\)5
Chia hết cho 6
C = 5 + 52+ 53 + ... + 520
C = ( 5 + 25 ) + ( 53 + 54) + ... + ( 519+ 520 )
C = 30 . ( 53 .1 + 53 . 5 ) + ... + ( 519 . 1 + 519 . 5 )
C = 30 + 53 . ( 5 + 52 ) + ... +519. ( 5 + 52 )
C = 30 . 1 + 30 . 53 +...+ 519 . 30 \(⋮\)30
Vậy C \(⋮\)5 và 6
Học tốt!!!
Ta có:
A = n2 + n + 1
A = n.(n + 1) + 1
a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chia hết cho 2; 1 không chia hết cho 2
=> n.(n + 1) + 1 không chia hết cho 2
=> A không chia hết cho 2 (đpcm)
b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
=> n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5
=> A không chia hết cho 5 (đpcm)
Ủng hộ mk nha ^_-
\(A=n^2+n+1=n\left(n+1\right)+1\) \(\left(n\in N\right)\)
a)Vì n và n+1 là 2 số tự nhiên liên tiếp, mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn
=>n(n+1) là số chẵn
=>n(n+1)+1 là số lẻ
=>A ko chia hết cho 2 (đpcm)
b)Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9
=>n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9;0
=>n(n+1) có thể có tận cùng là: 0;2;6;2;0;0;2;6;0
Hay n(n+1) có thể có tận cùng là: 0;2;6
=>n(n+1)+1 có thể có tận cùng là 1;3;7
=>A ko chia hết cho 5 (đpcm)
(x-1)^2.(x+2) = 0
=> x-1=0 hoặc x+2=0
=> x=1 hoặc x=-2
Vậy x thuộc {-2;1}
Tk mk nha
Vì abcabc = 1001 x abc
Mà 1001 lại chia hết cho 11
=> abcabc chia hết cho 11
Hội con 🐄 chúc bạn học tốt!!!
Phân tích cấu tạo số ta có : aaa=a x 111 = a x 3 x 37
=> aaa luôn chia hết cho 37 (đpcm)
Vì \(2x+3y⋮17\Rightarrow4.\left(2x+3y\right)⋮17\)\(=\left(8x+12y\right)\)
Vì \(\left(8x+12y\right)⋮17\)và \(9x+5y⋮17\)\(\Rightarrow\left(8x+12y\right)+\left(9x+5y\right)⋮17\)\(\Rightarrow17x+17y⋮17\)
\(\Rightarrow17\left(x+y\right)⋮17\)vì do \(17⋮17\)nên\(17\left(x+y\right)⋮17\)
=> Nếu \(2x+3y⋮17\)thì \(9x+5y⋮17\)
k mình nhé.
CHÚC BẠN HỌC GIỎI.
4:
a: A=1/3(1+1/2+...+1/64)
Đặt B=1+1/2+...+1/64
=>2B=2+1+...+1/32
=>B=2-1/64=127/64
=>A=1/3*127/64=127/192
b: =5/2(1-1/3+1/3-1/5+...+1/11-1/13)
=5/2*12/13
=60/26=30/13
dễ thôi mà , mk hướng dẫn nhé :
a) S= 5^198+5^199+5^200
= (5^198+5^2)+( 5^198+5^1)+5^200
= 5^198.31
=> S chia hết cho 31
bài này thế đó
nhớ t nha
S=5198+5199+5200
S= 5198 ( 1 + 5 +25 )
S = 5198 . 31 chia hết cho 31
Vậy S chia hết cho 31.