Điền dấu <,>,=
\(\frac{1}{31}\) + \(\frac{1}{32}\) +...+ \(\frac{1}{89}\) +\(\frac{1}{90}\) .......... \(\frac{5}{6}\)
Bạn trả lời nhanh nhất mình sẽ tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đã trả lời ở đâu đó rồi (chi tiết)
-Nhận xét, phân tích bài toán:
So sánh với (5/6) =>rút gọn vế trái thành một phân số có mẫu số bằng 6
=> ta chọn số hạng có mẫu số là bội số của 6 để gom lại.
\(\frac{1}{31}+..+\frac{1}{36}>\frac{1}{36}+..+\frac{1}{36}=\frac{6}{36}=\frac{1}{6}\)
\(\frac{1}{37}+...+\frac{1}{42}>\frac{1}{42}+..+\frac{1}{42}=\frac{6}{42}=\frac{1}{7}\)
..........
\(\frac{1}{83}+..+\frac{1}{90}=\frac{1}{90}+...+\frac{1}{90}=\frac{6}{90}=\frac{1}{15}\)
Như vậy sau bước 1 rút vê trái về còn \(\frac{1}{6}+\frac{1}{7}...+\frac{1}{15}\)
Rút gọn tiếp vẫn theo cách trên
\(\frac{1}{7}+..+\frac{1}{12}>\frac{1}{12}+..+\frac{1}{12}=\frac{6}{12}=\frac{3}{6}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}>\frac{1}{18}+\frac{1}{18}+\frac{1}{18}=\frac{1}{6}\)
\(VT=\left(\frac{1}{31}+..+\frac{1}{90}\right)>\left(\frac{1}{6}+\frac{3}{6}+\frac{1}{6}\right)=\frac{5}{6}=VP\)
Đặt \(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=30.\frac{1}{60}=\frac{1}{2}\)
\(B=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{90}>\frac{1}{90}+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}=30.\frac{1}{90}=\frac{1}{3}\)
\(=>Q=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{90}=A+B>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
Vậy \(Q>\frac{5}{6}\)
1/31 đến 1/90 có 60 số hạng mà 1/31 là lớn nhất nên ta lấy 1/31*60=60/31 < 2
\(B=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{...89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=8\frac{1}{10}\)
A = \(\frac{24}{48}\)+ \(\frac{12}{48}\)+ \(\frac{8}{48}\)+ \(\frac{2}{48}\)+ \(\frac{1}{48}\)
A = \(\frac{24+12+8+2+1}{48}\)= \(\frac{47}{48}\)
ai tốt bụng thì tk cho mk nha
mk chỉ tiềm đc bài i hệt bài của bn
https://olm.vn/hoi-dap/detail/99402078680.html
Đặt \(A=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\right)\)
Đặt \(B=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\)
Ta có: \(\frac{1}{31}>\frac{1}{45}\)
\(\frac{1}{32}>\frac{1}{45}\)
....................
\(\frac{1}{45}=\frac{1}{45}\)
\(\Rightarrow B>\frac{1}{45}.15\)
\(\Rightarrow B>\frac{1}{3}\)
Đặt \(C=\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{46}>\frac{1}{90}\)
\(\frac{1}{47}>\frac{1}{90}\)
.....................
\(\frac{1}{90}=\frac{1}{90}\)
\(\Rightarrow C>\frac{1}{90}.45\)
\(\Rightarrow C>\frac{1}{2}\)
\(\Rightarrow B+C>\frac{1}{3}+\frac{1}{2}\)
Hay \(A>\frac{5}{6}\left(1\right)\)
Lại có: \(A=\left(\frac{1}{31}+...+\frac{1}{59}\right)+\left(\frac{1}{60}+...+\frac{1}{90}\right)\)
Đặt \(D=\frac{1}{31}+...+\frac{1}{59}\)
Ta có: \(\frac{1}{31}< \frac{1}{30}\)
. ...................
\(\frac{1}{59}< \frac{1}{30}\)
\(\Rightarrow D< \frac{1}{30}.60\)
\(\Rightarrow D< \frac{1}{2}\)
Đăt \(E=\frac{1}{60}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{60}=\frac{1}{60}\)
.................
\(\frac{1}{90}< \frac{1}{60}\)
\(\Rightarrow E< \frac{1}{60}.31\)
\(\Rightarrow E< \frac{31}{60}< 1\)
\(\Rightarrow E< 1\)
\(\Rightarrow E+D< 1+\frac{1}{2}\)
Hay \(A< \frac{3}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{5}{6}< A< \frac{3}{2}\)
A = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 89 + 1 / 90 ... 5 / 6
A = 5 / 6 = 1 / 2 + 1 / 3
Ta đặt B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 ( 30 phân số )
C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 ( 30 phân số )
Ta có : B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 > 1 / 60 + 1 / 60 + 1 / 60 + ... + 1 / 60 = 30 . 1 / 60 = 1 / 2
C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 > 1 / 90 + 1 / 90 + 1 / 90 + ... + 1 / 90 = 30 . 1 / 90 = 1 / 3
Vì A = B + C > 1 / 2 + 1 / 3 = 5 / 6 nên 1 / 31 + 1 / 32 + ... + 1 / 89 + 1 / 90 > 5 / 6
GIẢI VẦY MỚI GỌI LÀ GIẢI CHI TIẾT
Ta sẽ lấy
\(1-\frac{1}{90}=\frac{89}{90}\)
Sau đó ta so sánh :
\(\frac{89}{90}>\frac{5}{6}\)
k mình nhé !!!
Ta có:1/31>1/32>1/33...>1/89>1/90 và 5/6>1/31.
Mà các số trên đều đều cộng dần có tử số là 1 và mẫu số là số tăng dần 1 đơn vị bắt đầu từ 31.
Cho nên khi cộng lại, đơn vị của các số cộng sẽ giảm dần.
cẻtyui