K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

Ta có: \(\frac{1}{2}+\frac{1}{3}< 2\cdot\frac{1}{2}=1\)

\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< 4\cdot\frac{1}{4}=1\)

\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+...+\frac{1}{15}< 8\cdot\frac{1}{8}=1\)

\(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+...+\frac{1}{31}< 16\cdot\frac{1}{16}=1\)

\(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}< 32\cdot\frac{1}{32}=1\)

Cộng từng vế của các BĐT trên ta có:

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 5\)

\(\Leftrightarrow64+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 69\)

\(\Leftrightarrow1+\frac{1}{1}+1+\frac{1}{2}+1+\frac{1}{3}+...+1+\frac{1}{63}< 69\)

\(\Leftrightarrow\frac{2}{1}+\frac{3}{2}+\frac{4}{3}+...+\frac{64}{63}< 69\)

\(\Leftrightarrow\frac{2^2}{1\cdot2}+\frac{3^2}{2\cdot3}+\frac{4^2}{3\cdot4}+...+\frac{64^2}{63\cdot64}< 69\)đpcm

Cho Linh xin 2 k nào :D

23 tháng 10 2016

Chứng minh rằng:

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)

Ta có:

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\\ =\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100}< 2\)

23 tháng 10 2016

Ichigo bạn hiểu thì kệ bạn :v

9 tháng 6 2017

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

20 tháng 6 2019

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha 

6 tháng 1 2020

Đặt \(A=\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(\Rightarrow A=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(\Rightarrow A=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(\Rightarrow A=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{\text{4!}}+...+\frac{1}{100!}\right)\)

\(\Rightarrow A=1+1-\frac{1}{99!}-\frac{1}{100!}\)

\(\Rightarrow A=2-\frac{1}{99!}-\frac{1}{100!}\)

\(2-\frac{1}{99!}-\frac{1}{100!}< 2.\)

\(\Rightarrow A< 2\left(đpcm\right).\)

Chúc bạn học tốt!

17 tháng 9 2016

A= (1x2x3x...x10)/(1x2x3x...x10)x(1x2x3x...x10)/(2x3x4x...x11)

A=1x 1/11=1/11

bạn nhớ nha

21 tháng 6 2016

Ta thấy mỗi hạng tử của tổng đều có dạng:  \(\frac{\left(n-1\right)n-1}{n!}=\frac{\left(n-1\right)n}{n!}-\frac{1}{n!}=\frac{1}{\left(n-2\right)!}-\frac{1}{n!}\)

Như vậy VT = \(\frac{1}{0!}-\frac{1}{2!}+\frac{1}{1!}-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+\frac{1}{3!}-\frac{1}{5!}+...+\frac{1}{98!}-\frac{1}{100!}\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

22 tháng 6 2016

LA 0 DO CON NGU DU

8 tháng 9 2015

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+....+\frac{99.100}{100!}-\frac{1}{100!}\)

\(\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{99!}\right)\)

\(1+1-\frac{1}{99!}\)

\(2-\frac{1}{99!}

\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+2015}\)

\(=\frac{2}{1.2}+\frac{1}{\frac{\left(1+2\right).2}{2}}+\frac{1}{\frac{\left(1+2+3\right).3}{2}}+.....+\frac{1}{\frac{\left(2015+1\right).2015}{2}}\)

\(=\frac{2}{1.2}+\frac{2}{2.3}+....+\frac{2}{2015.2016}\)

8 tháng 2 2020

dễ vãi cả đạn

15 tháng 8 2017

1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)

=> còn lại thì bạn có thể tự chứng minh

16 tháng 8 2017

mk chả hiểu j