K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

A =\(\frac{1}{x}+\frac{1}{y}\)

   =\(\frac{x+y}{xy}\)

   =\(\frac{1}{x\left(1-x\right)}\)(1)

Amin<=>x(1-x)max

Ta có: \(x\left(1-x\right)=-\left(x^2+x\right)=-\left(x^2+x+\frac{1}{4}-\frac{1}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\)<=\(\frac{1}{4}\)

=>x(1-x)max =\(\frac{1}{4}\)Khi x=\(\frac{-1}{2}\)

Thế x=\(\frac{-1}{2}\)vào (1)

=>A=\(\frac{-4}{3}\)

Vậy Amin=\(\frac{-4}{3}\)khi x=-1/2; y=3/4

6 tháng 11 2017

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

6 tháng 11 2017

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)

2 tháng 5 2019

Đáp án giống như đây: https://olm.vn/hoi-dap/detail/218388947486.html

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

1 tháng 7 2017

\(A=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{18}{x+y+z+3}=3\)

2 tháng 7 2017

cảm ơn nha

12 tháng 10 2020

\(A=\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{x^2y^2-x^2-y^2+1}{x^2y^2}=\frac{x^2y^2-x^2-y^2+\left(x+y\right)^2}{x^2y^2}=\frac{x^2y^2+2xy}{x^2y^2}\)\(=1+\frac{2}{xy}\)

Ta có BĐT: \(\left(x+y\right)^2\ge4xy;\forall x,y>0\)

Đẳng thức xảy ra khi và chỉ khi x=y.

\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)

Có: \(A=1+\frac{2}{xy}\ge1+\frac{8}{\left(x+y\right)^2}=1+8=9\)

Vậy GTNN của A=9 khi x=y=1/2