K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

A =\(\frac{1}{x}+\frac{1}{y}\)

   =\(\frac{x+y}{xy}\)

   =\(\frac{1}{x\left(1-x\right)}\)(1)

Amin<=>x(1-x)max

Ta có: \(x\left(1-x\right)=-\left(x^2+x\right)=-\left(x^2+x+\frac{1}{4}-\frac{1}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\)<=\(\frac{1}{4}\)

=>x(1-x)max =\(\frac{1}{4}\)Khi x=\(\frac{-1}{2}\)

Thế x=\(\frac{-1}{2}\)vào (1)

=>A=\(\frac{-4}{3}\)

Vậy Amin=\(\frac{-4}{3}\)khi x=-1/2; y=3/4

1 tháng 7 2017

\(A=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{18}{x+y+z+3}=3\)

2 tháng 7 2017

cảm ơn nha

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

7 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(1+\frac{1}{x}+1+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)(1)

Lại có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{1}=4\)(2)

Từ (1) và (2) => \(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra <=> x = y = 1/2

Vậy MinA = 18 

17 tháng 7 2018

Áp dụng BĐT cosi với 2 số x,y > 0

Ta có: \(\frac{x+y}{2}\ge\sqrt{xy}\Leftrightarrow a\ge\sqrt{xy}\)

Áp dụng BĐT cosi với 2 số không âm \(\frac{1}{x},\frac{1}{y}\)

ta có: \(\frac{\frac{1}{x}+\frac{1}{y}}{2}\ge\sqrt{\frac{1}{x}.\frac{1}{y}}\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{1}{\sqrt{xy}}\left(1\right)\)

Tiếp tục xét: \(\frac{2}{\sqrt{xy}}\ge\frac{2}{a}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{2}{a}\)

A đạt GTNN khi \(\frac{1}{x}=\frac{1}{y}\Leftrightarrow x=y=a\)

20 tháng 9 2018

Áp dụng BDT BU-nhi-a mo rong, ta có:

A=\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}\)

Do \(x+y=2a\)nen:

A\(\ge\frac{4}{2a}\)

\(\Leftrightarrow A\ge\frac{2}{a}\)

Dau bang xay ra khi : x=y=a

12 tháng 5 2017

A=4 

tk đi mình gửi kq cho

12 tháng 5 2017

Ta có:

\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)

\(\Rightarrow A=xy\ge4\) 

Dấu = xảy ra khi x = y = 2