\(\left(3x-\frac{1}{2}\right)+\left(\frac{1}{2}y+\frac{3}{5}\right)=0\)
giúp bài này với các bạn.
lưu ý dấu () là giá trị tuyệt đối. Thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)
vì \(\left|\frac{3}{2}x+\frac{1}{9}\right|\ge0;\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0=>\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0\) (với mọi x,y)
Mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\) (theo đề)
Nên \(\left|\frac{3}{2}x+\frac{1}{9}\right|=0=>\frac{3}{2}x=-\frac{1}{9}=>x=-\frac{2}{27}\)
\(\left|\frac{1}{5}y-\frac{1}{2}\right|=0=>\frac{1}{5}y=\frac{1}{2}=>y=\frac{5}{2}\)
Vậy...........
Vì \(\left|x+\frac{1}{2}\right|\ge0;\left|x+\frac{1}{3}\right|\ge0;\left|x+\frac{1}{6}\right|\ge0\) với mọi x
=>\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|\ge0\) với mọi x
=>\(4x\ge0=>x\ge0\), do đó PT ban đầu trở thành:
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x< =>3x+1=4x< =>x=1\)
Vậy x=1
1) \(\left(x-2\right)\left(\frac{x+1}{3}-x+1\right)=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{3}-x^2+x-\frac{2\left(x+1\right)}{3}+2x-2=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{3}-x^2+3x-\frac{2\left(x+1\right)}{3}-2=0\)
\(\Leftrightarrow x\left(x+1\right)-3x^2+9x-2\left(x+1\right)-6=0\)
\(\Leftrightarrow x^2+x-3x^2+9x-2x-2-6=0\)
\(\Leftrightarrow-2x^2+8x-8=0\)
\(\Leftrightarrow-2\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow-2.\left(x^2-2.x.2+2^2\right)=0\)
\(\Leftrightarrow-2\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy nghiệm của phương trình là: {2}
2) \(\left(3x+4x\right)\left(\frac{x}{2}-x-\frac{3x}{5}+1\right)=0\)
\(\Leftrightarrow7x\left(\frac{x}{2}-x-\frac{3x}{5}+1\right)=0\)
\(\Leftrightarrow7x\left(-\frac{11x}{10}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}7x=0\\-\frac{11x}{10}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{11}{10}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{10}{11}\end{cases}}\)
Vậy: nghiệm của phương trình là: \(\left\{0;\frac{10}{11}\right\}\)
3) \(\left|x-1\right|=x^2-x\)
\(\Leftrightarrow x-1=x^2-x\)
\(\Leftrightarrow1=x^2-x-x\)
\(\Leftrightarrow1=x^2\)
\(\Leftrightarrow x^2=1\)
\(\Rightarrow x=\pm1\)
Vậy nghiệm phương trình là: {1; -1}
4) \(\left|x^2-3x+1\right|=2x-3\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-3x+1=2x-3\\x^2-3x+1=-\left(2x-3\right)\end{cases}}\)
Xét trường hợp này rồi làm tiếp, dễ rồi :))
\(\frac{4}{5}-|x-\frac{1}{6}|=\frac{2}{3}\)
\(\Rightarrow|x-\frac{1}{6}|=\frac{2}{15}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{6}=\frac{2}{15}\\x-\frac{1}{6}=-\frac{2}{15}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{1}{30}\end{cases}}\)
Vậy.....
( 3x - 1/2 ) + ( 1/2y + 3/5 ) = 0
=> ( 3 x - 1/2 ) = 0
3x = 0+1/2
3x = 1/2
x = 1/2 : 3
x = 1/6
=> ( 1/2 y + 3/5 ) = 0
1/2y = 0 - 3/5
1/2 y = -3/5
y = -3/5 : 1/2
y = -6/5
a) \(=10\frac{1}{4}\cdot\frac{-5}{3}-8\frac{1}{4}\cdot\frac{-5}{3}-5=\left(10\frac{1}{4}-8\frac{1}{4}\right)\cdot\frac{-5}{3}-5\)
\(=\left(\frac{41}{4}-\frac{33}{4}\right)\cdot\frac{-5}{3}-5=2\cdot\frac{-5}{3}-5\)\(=\frac{-10}{3}-\frac{15}{3}=\frac{-25}{3}\)
b)\(=\frac{5}{7}+1+\frac{2}{7}+\frac{2^{10}\cdot\left(2^3\right)^3}{\left(2^2\right)^9}\)
\(=\frac{5}{7}+\frac{2}{7}+1+\frac{2^{10}\cdot2^9}{2^{27}}\)
\(=1+1+\frac{1}{2^8}=2+\frac{1}{256}=\frac{512}{256}+\frac{1}{256}=\frac{513}{256}\)
Ta thấy : \(\left(2x-1\right)^{2008}\ge0\)
\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)
\(\left|x+y+z\right|\ge0\)
Để \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y=z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=-x-y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{-1}{2}-\frac{2}{5}\end{cases}}\)
Ta có:
3x-1/2 = 0
3x= 1/2
x= 1/6
và 1/2y + 3/5 =0
1/2y = -3/5
y= -6/5
Vậy x= 1/6 và y = -6/5
\(\left(3x-\frac{1}{2}\right)+\left(\frac{1}{2}y+\frac{3}{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{1}{2}=0=\frac{1}{6}\\\frac{1}{2}y+\frac{3}{5}=0=\frac{6}{5}\end{cases}}\)
Vậy ......