chung minh rang khong ton tai 3 so huu ti :x,y,z
xy=13/15
yz=1/3
zx=3/13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2=2\)
\(x=\sqrt{2}\)
Vẫn có thể chuyển được sang số hữu tỉ nhưng chỉ là chưa tìm ra thui:v
TH1:Nếu x>0
nếu y\(\ne\)0, ta có: \(VT>2012.1^{2015}+2013.1^{2018}>2015\)
nếu y=0, ta có : nếu x=1, VT=2012<2015
nếu x>1, \(VT>2012.2^{2015}+2013.0^{2018}>2015\)
TH2: nếu x=0, pt vô nghiệm
TH3: nếu x<0, ta có: \(2013y^{2018}+2012x^{2015}=2012\left(y^{2018}-x^{2015}\right)+y^{2018}\)
ta thấy x<0 nên VT>2012.(1+1)+1>2015
Vậy pt trên không có nghiệm nguyên
cho 51 so nguyen duong khong qua 100. chung minh rang ton tai hai so trong 51 so ay co tong bang 101
\(xy=\frac{13}{15}\)
\(yz=\frac{1}{3}\)
\(zx=\frac{3}{13}\)
\(\Rightarrow\left(xyz\right)^2=\frac{13}{15}.\frac{1}{3}.\frac{3}{13}=\frac{1}{15}=\frac{1^2}{\left(\sqrt{15}\right)^2}\)
Vì x ; y ; z là các số hữu tỉ nên ( xyz)2 là số hữu tỉ, ta chỉ cần chứng minh \(\sqrt{15}\) không phải số hữu tỉ mà là số vô tỉ.
Giả sử \(\sqrt{15}\) là số hữu tỉ thì coi \(\sqrt{15}=\frac{m}{n}\)( \(\frac{m}{n}\) phải là phân số tối giản)
\(\Rightarrow15=\frac{m^2}{n^2}\)
\(\Rightarrow15n^2=m^2\)
\(\Rightarrow m^2\)chia hết cho 15 = 3 x 5; 3 và 5 là các số nguyên tố nên \(m\) chia hết cho 15.
Đặt \(m=15k\left(k\in Z;k\ne0\right)\)
\(\Rightarrow m^2=\left(15k\right)^2=225k^2\)
\(\Rightarrow15n^2=m^2=225k^2\)
\(\Rightarrow n^2=\frac{225k^2}{15}=15k^2\)
\(\Rightarrow n^2\)chia hết cho 15
\(\Rightarrow n\)chia hết cho 15
Xét phân số \(\frac{m}{n}\)có m và n đều chia hết cho 15 nên không phải phân số tối giản, trái với đề bài. Do đó \(\sqrt{15}\) không phải số hữu tỉ.
Do đó không tồn tại 3 số hữu tỉ x ; y ; z thỏa mãn đề bài.