K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2022

a)M=1+1/5+3(1/35+...+1/9603+3/9999)

M=1+1/5+3/2(101/505-5/505)

M=1+1/5+3/2*96

M=1+1/5+144/505

M=150/101

b)Đặt A=1/4^2+1/6^2+1/8^2+....+1/(2n)^2

A=1/2^2(1/2^2+1/3^2+1/3^2+...+1/n^2)

thay vào B ta có:

1/2^2<1/1,2(vì 1>0;0<1,2<2^2)

1/3^2<1/2,3;1/4^2<1.3,4;...1/n^2<1/(n-1)n

1/4+1/9+1/16+...+1/n<1/1,2+1/2,3+...+1/n(n-1)

B<1-1/2+1/2=1/3+...+1/n-1-1/n

B<1=1/n<1=>A<1/4

10 tháng 3 2022

ko có chi?

12 tháng 3 2022

a. \(\Rightarrow M=\dfrac{3}{5}+\dfrac{3}{15}+\dfrac{3}{35}+...+\dfrac{3}{9603}+\dfrac{3}{9999}\\ \Rightarrow M=\dfrac{3}{2}\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{9603}+\dfrac{2}{9999}\right)\\ \Rightarrow M=\dfrac{3}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\right)\\ \Rightarrow M=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ \Rightarrow M=\dfrac{3}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{150}{101}\)

b. \(S=\dfrac{1}{\left(2\cdot2\right)^2}+\dfrac{1}{\left(2\cdot3\right)^2}+\dfrac{1}{\left(2\cdot4\right)^2}+...+\dfrac{1}{\left(2\cdot n\right)^2}\\ S=\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\right)< \dfrac{1}{4}\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{\left(n-1\right)n}\right)\\ S< \dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\\ S< \dfrac{1}{4}\left(1-\dfrac{1}{n}\right)< \dfrac{1}{4}\\ \Rightarrow\text{đ}pcm\)

AH
Akai Haruma
Giáo viên
17 tháng 11 2023

Lời giải:

Tổng U là tổng của các số cách đều 4 đơn vị.

Số số hạng: $(218-2):4+1=55$ 

Tổng U là: $(218+2).55:2=6050$

Vì $4100< 6050< 6150$ nên ta có đpcm.

b. $U=6050$ có tận cùng là 0 nên chia hết cho 10.

26 tháng 3 2016

a) Áp dụng bất đẳng thức Cauchy cho các số dương, ta có :

\(\log_23+\log_32>2\sqrt{\log_23.\log_32}=2\sqrt{1}=2\)

Không xảy ra dấu "=" vì \(\log_23\ne\log_32\)

Mặt khác, ta lại có :

\(\log_23+\log_32<\frac{5}{2}\Leftrightarrow\log_23+\frac{1}{\log_23}-\frac{5}{2}<0\)

                             \(\Leftrightarrow2\log^2_23-5\log_23+2<0\)

                            \(\Leftrightarrow\left(\log_23-1\right)\left(\log_23-2\right)<0\) (*)

Hơn nữa, \(2\log_23>2\log_22>1\) nên \(2\log_23-1>0\)

Mà \(\log_23<\log_24=2\Rightarrow\log_23-2<0\)

Từ đó suy ra (*) luôn đúng. Vậy \(2<\log_23+\log_32<\frac{5}{2}\)

b) Vì \(a,b\ge1\) nên \(\ln a,\ln b,\ln\frac{a+b}{2}\) không âm. 

Áp dụng bất đẳng thức Cauchy ta có

\(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\)

Suy ra 

\(2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

Mặt khác :

\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\)

Từ đó ta thu được :

\(\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)

c) Ta chứng minh bài toán tổng quát :

\(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi n >1

Thật vậy, 

\(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\) 

suy ra :

\(\log_{\left(n+1\right)^2}n\left(n+2\right)<1\Leftrightarrow\frac{1}{2}\log_{n+1}n\left(n+2\right)<1\)

                                  \(\Leftrightarrow\log_{n+1}n+\log_{\left(n+1\right)}n\left(n+2\right)<2\)

Áp dụng bất đẳng thức Cauchy ta có :

\(2>\log_{\left(n+1\right)}n+\log_{\left(n+1\right)}n\left(n+2\right)>2\sqrt{\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)}\)

Do đó ta có :

\(1>\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)\) và \(\log_n\left(n+1>\right)\log_{\left(n+1\right)}\left(n+2\right)\) với mọi n>1

 

19 tháng 11 2023

Sửa đề:\(A=4+4^2+4^3+...+4^{21}\)

=>\(4A=4^2+4^3+...+4^{22}\)

=>\(4A-A=4^{22}+4^{21}+...+4^3+4^2-4^{21}-...-4^3-4^2\)

=>\(3A=4^{22}-4^2\)

=>\(A=\dfrac{4^{22}-4^2}{3}\)

\(A=4+4^2+4^3+...+4^{21}\)

\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{19}+4^{20}+4^{21}\right)\)

\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{19}\left(1+4+4^2\right)\)

\(=21\left(4+4^4+...+4^{19}\right)⋮21\)

11 tháng 11 2023

E = 41 + 49 + 57 + .... + 351

E = (41 + 49 ) + ( 57 + 63 ) + ... + ( 343 + 351 )

Gợi ý : các tổng trong ngoặc đều chia hết cho 2 

→ E chia hết cho 2 

12 tháng 11 2023

H = 2 + 7 + 12 +...+ 212

Dãy số trên là dãy số cách đều với khoảng cách là: 7 - 2 = 5

Số số hạng của dãy số trên là: (212 - 2) : 5 + 1 = 43

H = (212 + 2) x 43 : 2 = 4601 

H -  1 = 4601 - 1

H - 1 = 4602 ⋮ 2

CM H - 1 không chia hết cho 2 là điều không thể xảy ra 

20 tháng 9 2017

Lê Cảnh Bảo Long bn tham khảo nha:

a, Chứng minh rằng trong một tứ giác, mỗi đường chéo lớn hơn nửa chu vi tứ giác đó . 
Phải là: mỗi đường chéo nhỏ hơn nửa chu vi tứ giác đó 

cho tứ giác ABCD ta có AC< AB + BC (1) ( trong tam giác tổng 2 cạnh lớn hơn cạnh thứ 3) 
và AC<AD+DC (2) (như trên) , cộng hai bất đẳng thức cùng chiều (1) và (2) 
=>2AC < AB + BC + AD + DC = 2p => AC<p chứng minh tương tự ta cũng có BD < p 

b, Chứng minh rằng trong một tứ giác, tổng hai đường chéo 
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 
* giao của AC và BD là O. 
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 
cổng 4 bất đẳng thức cùng chiề này lại ta có: 
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)

15 tháng 11 2023

    G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

2.G = 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211

2G - G = (22 + 23 + 24 + 25 + 26 + 27 + 28 + 2+ 210 + 211) - (21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210)

G = 22 + 23 + 24 +25 + 26 + 27 + 28 + 29 + 210 + 211 - 21 -22 -23 -24 - 25 - 26 - 27 - 28 - 29 - 210

G = (22 -22) +(23 - 23) + (24 - 24) + (25 -25) + (26 - 26) +(27 - 27) +(28 -28) + (29 - 29) + (210 - 210) + (211 - 21)

G = 211 - 2

G = 2048 - 2 (đpcm)

15 tháng 11 2023

b, 

G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

D = 2.(1+ 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29)

Vì 2 ⋮ 2 nên D = 2.(1+2+22+23+24+25+26+27+28+29)⋮2 (đpcm)

13 tháng 12 2020

a)gọi 3 số tự nhiên liên tiếp đó là :

k;k+1;k+2

tổng 3 số tự nhiên liên tiếp đó là: k+k+1+k+2

ta có

        k+k+1+k+2

\(\Leftrightarrow\)k+(k+1)+(k+2)

\(\Leftrightarrow\)k.3+(1+2)

\(\Leftrightarrow\)k.3+3

vì k.3 chia hết cho 3 và 3 chia hết cho 3 nên k.3+3

 \(\Rightarrow\)k+k+1+k+2 chia hết cho 3

Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3

b) gọi 4 số tự nhiên liên tiếp đó 4 là:

               4;4+1;4+2;4+3

tổng của 4 số tự nhiên liên tiếp 4 là

k+k+1+k+2+k+3

ta có

           k+k+1+k+2+k+3

\(\Leftrightarrow\)k+(k+1)+(k+2)+(k+3)

\(\Leftrightarrow\)k.4+(1+2+3)

\(\Leftrightarrow\)k.4+6

vì k.4 chia hết cho 4 nhưng 6 không chia hết cho 4 nên k.4+6 không chia hết cho 4

\(\Rightarrow\)  k+k+1+k+2+k+3 không chia hết cho 4

vậy tổng 4 số tự nhiên ko chia hết cho 4

OH SORY BẠN VÌ CÂU b) MÌNH CHỈ LÀM ĐƯỢC CHỨNG MINH RẰNG TỔNG 4 SỐ TỰ NHIÊN LIÊN TIẾP KHÔNG CHIA HẾT CHO 4 THÔI

VÀ MK NGHĨ CÂU B ĐỀ SAi