Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3/2-5/6+/12-9/20+11/30-13/42+15/56-17/72+19/90
A=11/10
hok tốt nha
Có \(P=\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times...\times\frac{399}{400}< \frac{2}{3}\times\frac{4}{5}\times...\times\frac{400}{401}\)
=> \(P^2< \frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{400}{401}=\frac{1}{401}< \frac{1}{400}=\frac{1}{20}\)
=> \(P< \frac{1}{20}\)(đpcm).
a) Chứng tỏ A không phải là số nguyên
Cho: \(A=1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^3+\left(\frac{3}{4}\right)^4-.......-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\)
Đây là đề bài câu a nha các bn
Do bị lỗi nên đây là là câu a nha các bn
a)Quy đồng: \(\frac{5}{8}=\frac{5.3}{8.3}=\frac{15}{24}\)
Vì \(\frac{5}{24}< \frac{10+5}{24}=\frac{15}{24}\)
\(\Rightarrow\frac{5}{24}< \frac{5+10}{24}=\frac{5}{8}\)
b) Quy đồng:
\(\frac{4}{9}=\frac{4.6}{9.6}=\frac{24}{9.6}\)
\(\frac{2}{3}=\frac{2.18}{3.18}=\frac{36}{9.6}\)
Vì \(\frac{36}{9.6}>\frac{24}{9.6}>\frac{6+9}{9.6}\)
\(\Rightarrow\frac{2}{3}>\frac{4}{9}>\frac{6+9}{6.9}\)
\(25\%-1\frac{1}{2}+0,5\cdot\frac{12}{5}\)
\(=\frac{1}{4}-\frac{3}{2}+\frac{1}{2}\cdot\frac{12}{5}\)
\(=\frac{1}{4}-\frac{3}{2}+\frac{6}{5}\)
\(=\frac{5}{20}-\frac{30}{20}+\frac{24}{20}\)
\(=\frac{-1}{20}\)
a. \(\Rightarrow M=\dfrac{3}{5}+\dfrac{3}{15}+\dfrac{3}{35}+...+\dfrac{3}{9603}+\dfrac{3}{9999}\\ \Rightarrow M=\dfrac{3}{2}\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{9603}+\dfrac{2}{9999}\right)\\ \Rightarrow M=\dfrac{3}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\right)\\ \Rightarrow M=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ \Rightarrow M=\dfrac{3}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{150}{101}\)
b. \(S=\dfrac{1}{\left(2\cdot2\right)^2}+\dfrac{1}{\left(2\cdot3\right)^2}+\dfrac{1}{\left(2\cdot4\right)^2}+...+\dfrac{1}{\left(2\cdot n\right)^2}\\ S=\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\right)< \dfrac{1}{4}\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{\left(n-1\right)n}\right)\\ S< \dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\\ S< \dfrac{1}{4}\left(1-\dfrac{1}{n}\right)< \dfrac{1}{4}\\ \Rightarrow\text{đ}pcm\)