Tìm x:
a. ( x - 1 )2 = 1
b. ( 5 - x ) 2 = 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A\left(x\right)=x^2-10x+25\)
\(\Rightarrow A\left(x\right)=\left(x-5\right)^2\)
\(\Rightarrow\left\{{}\begin{matrix}A\left(0\right)=\left(0-5\right)^2=25\\A\left(-1\right)=\left(-1-5\right)^2=36\end{matrix}\right.\)
b) \(A\left(x\right)+B\left(x\right)=6x^2-5x+25\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-A\left(x\right)\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-\left(x^2-10x+25\right)\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-x^2+10x-25\)
\(\Rightarrow B\left(x\right)=5x^2+5x\)
\(\Rightarrow B\left(x\right)=5x\left(x+1\right)\)
c) \(A\left(x\right)=\left(x-5\right)C\left(x\right)\)
\(\Rightarrow C\left(x\right)=\dfrac{\left(x-5\right)^2}{x-5}=x-5\left(x\ne5\right)\)
d) Nghiệm của B(x)
\(\Leftrightarrow B=0\)
\(\Leftrightarrow5x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) là nghiệm của B(x)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) \(\left(x+3\right)^2-\left(x-2\right)^3=\left(x+5\right)\left(x^2-5x+25\right)-108\)
\(\Leftrightarrow x^2+6x+9-x^2+4x-4=x^3-5x^2+25x+5x^2-25x+125-108\)
\(\Leftrightarrow x^3-10x+12=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+6\right)=0\)
\(\Leftrightarrow x=2\)( do \(x^2+2x+6=\left(x+1\right)^2+4\ge4>0\))
`#040911`
`a,`
`15 + 25 \div (2x - 1) = 20`
`\Rightarrow 25 \div (2x - 1) = 20 - 15`
`\Rightarrow 25 \div (2x - 1) = 5`
`\Rightarrow 2x - 1 = 25 \div 5`
`\Rightarrow 2x - 1 = 5`
`\Rightarrow 2x = 6`
`\Rightarrow x = 3`
Vây, `x = 3.`
`b,`
\(3^{x-1}+2\cdot3^x=21\)
`\Rightarrow 3^x \div 3 + 2. 3^x = 21`
`\Rightarrow 3^x . \frac{1}{3} + 2. 3^x = 21`
`\Rightarrow 3^x . (\frac{1}{3} + 2) = 21`
`\Rightarrow 3^x . \frac{7}{3} = 21`
`\Rightarrow 3^x = 21 \div \frac{7}{3}`
`\Rightarrow 3^x = 9`
`\Rightarrow 3^x = 3^2`
`\Rightarrow x = 2`
Vậy, `x = 2.`
`c,`
\(2^{x-3}+2^{x+1}=17\)
`\Rightarrow 2^x \div 2^3 + 2^x . 2 = 17`
`\Rightarrow 2^x . \frac{1}{8} + 2^x . 2 = 17`
`\Rightarrow 2^x . (\frac{1}{8} + 2) = 17`
`\Rightarrow 2^x . \frac{17}{8} = 17`
`\Rightarrow 2^x = 17 \div \frac{17}{8}`
`\Rightarrow 2^x = 8`
`\Rightarrow 2^x = 2^3`
`\Rightarrow x = 3`
Vậy, `x = 3`
`d,`
\(5^x-5^{x-1}=20\)
`\Rightarrow 5^x - 5^x \div 5 = 20`
`\Rightarrow 5^x - 5^x . \frac{1}{5} = 20`
`\Rightarrow 5^x . (1 - \frac{1}{5} = 20`
`\Rightarrow 5^x . \frac{4}{5} = 20`
`\Rightarrow 5^x = 20 \div \frac{4}{5}`
`\Rightarrow 5^x = 25`
`\Rightarrow 5^x = 5^2`
`\Rightarrow x = 2`
Vậy, `x = 2.`
\(a.25:\left(2x-1\right)=5\)
\(2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\)
\(b.3^x:3+2.3^x=21\)\(\Leftrightarrow3^x.\dfrac{1}{3}+2.3^x=21\)
\(\Leftrightarrow3^x\left(\dfrac{1}{3}+2\right)=21\)
\(\Leftrightarrow3^x.\dfrac{7}{3}=21\)
\(\Leftrightarrow3^x=9\Leftrightarrow x=2\)
\(c.2^x:2^3+2^x.2=17\Leftrightarrow2^x.\dfrac{1}{8}+2^x.2=17\)
\(\Leftrightarrow2^x.\dfrac{17}{8}=17\Leftrightarrow2^x=8\Leftrightarrow x=3\)
\(d.5^x-5^x:5=20\Leftrightarrow5^x-5^x.\dfrac{1}{5}=20\)
\(\Leftrightarrow5^x\left(1-\dfrac{1}{5}\right)=20\Leftrightarrow5^x=20:\dfrac{4}{5}\Leftrightarrow5^x=25\Leftrightarrow x=2\)
Tìm x biết
a) (x-1/2)^2=4
b) 10/1/2-(x+1/3)^2=1/1/2
c) (x-1/5)^2+17/25=26/25
d) 1/5/27+(3x-7/9)^3=24/27
a) (x - 1/2)2 = 4
<=> (x - 1/2)2 = 22
<=> x - 1/2 = -2; 2
<=> x - 1/2 = 2 hoặc x - 1/2 = -2
x = 2 + 1/2 x = -2 + 1/2
x = 5/2 x = -3/2
=> x = 5/2 hoặc x = -3/2
b) 10/1/2 - (x + 1/3)2 = 1/1/2
<=> -(x + 1/3)2 = 1/1/2 - 10/1/2
<=> -(x + 1/3)2 = 1/2 - 5
<=> -(x + 1/3)2 = -5.2 + 1/2
<=> -(x + 1/3)2 = -9/2
<=> (x + 1/3)2 = 9/2
<=> x + 1/3 = \(\sqrt{\frac{9}{2}}\) hoặc x + 1/3 = \(-\sqrt{\frac{9}{2}}\)
x = \(\frac{3\sqrt{2}}{2}\) - 1/3 x = \(-\frac{3\sqrt{2}}{2}\) -1/3
=> x = \(\frac{3\sqrt{2}}{2}\) - 1/3 hoặc x = \(-\frac{3\sqrt{2}}{2}\) -1/3
c) (x - 1/5)2 + 17/25 = 26/25
<=> (x - 1/5)2 = 26/25 - 17/25
<=> (x - 1/5)2 = (3/5)2
<=> x - 1/5 = -3/5; 3/5
<=> x - 1/5 = 3/5 hoặc x - 1/5 = -3/5
x = 3/5 + 1/5 x = -3/5 + 1/5
x = 4/5 x = -2/5
=> x = 4/5 hoặc x = -2/5
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
\(a,\left(5x-3\right)\left(3x+1\right)-\left(15x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\left(15x^2-4x-3\right)-\left(15x^2-29x-2\right)=0\)
\(\Rightarrow15x^2-4x-3-15x^2+29x+2=0\)
\(\Rightarrow25x-1=0\)
\(\Rightarrow x=\dfrac{1}{25}\)
\(----------\)
\(b,x^2+\left(x+5\right)\left(x-3\right)-25=0\)
\(\Rightarrow x^2+x^2+2x-15-25=0\)
\(\Rightarrow2x^2+2x=40\)
\(\Rightarrow2x\left(x+1\right)=40\)
\(\Rightarrow x\left(x+1\right)=20\)
\(\Rightarrow x;x+1\) là ước của 20
mà \(x;x+1\) là hai số nguyên liên tiếp \(\left(x\in Z\right)\)
nên \(x\left(x+1\right)=4.5=\left(-5\right).\left(-4\right)=20\)
\(\Rightarrow x\in\left\{4;-5\right\}\)
a: =>15x^2+5x-9x-3-15x^2+30x-x+2=0
=>25x-1=0
=>x=1/25
b: =>x^2+x^2+2x-15-25=0
=>2x^2+2x-40=0
=>x^2+x-20=0
=>(x+5)(x-4)=0
=>x=4 hoặc x=-5
\(a,[(2\cdot x-11):3+1]\cdot5=20\\\Rightarrow (2x-11):3+1=20:5\\\Rightarrow (2x-11):3+1=4\\\Rightarrow (2x-11):3=4-1\\\Rightarrow (2x-11):3=3\\\Rightarrow2x-11=3\cdot3\\\Rightarrow2x-11=9\\\Rightarrow2x=9+11\\\Rightarrow2x=20\\\Rightarrow x=20:2=10\)
\(b,(25-2x)^3:5-3^2=4^2\\\Rightarrow(25-2x)^3:5-9=16\\\Rightarrow(25-2x)^3:5=16+9\\\Rightarrow(25-2x)^3:5=25\\\Rightarrow(25-2x)^3=25\cdot5\\\Rightarrow(25-2x)^3=125\\\Rightarrow(25-2x)^3=5^3\\\Rightarrow25-2x=5\\\Rightarrow2x=25-5\\\Rightarrow2x=20\\\Rightarrow x=20:2=10\\Toru\)
a, \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
b, \(\left[{}\begin{matrix}5-x=-5\\5-x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=0\end{matrix}\right.\)
a. \(\left(x-1\right)^2=1\)
\(\Leftrightarrow\left(x-1\right)^2=\left(\pm1\right)^2\)
TH1: \(x-1=1\)
\(\Leftrightarrow x=1+1\)
\(\Leftrightarrow x=2\)
TH2: \(x-1=\left(-1\right)\)
\(\Leftrightarrow x=\left(-1\right)+1\)
\(\Leftrightarrow x=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
Vậy \(x=2\) hoặc \(x=0\)
b. \(\left(5-x\right)^2=25\)
\(\Leftrightarrow\left(5-x\right)^2=\left(\pm5\right)^2\)
TH1: \(5-x=5\)
\(\Leftrightarrow x=5-5\)
\(\Leftrightarrow x=0\)
TH2: \(5-x=\left(-5\right)\)
\(\Leftrightarrow x=5-\left(-5\right)\)
\(\Leftrightarrow x=10\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=10\end{cases}}\)
Vậy \(x=0\) hoặc \(x=10\)
HT