Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#040911`
`a,`
`15 + 25 \div (2x - 1) = 20`
`\Rightarrow 25 \div (2x - 1) = 20 - 15`
`\Rightarrow 25 \div (2x - 1) = 5`
`\Rightarrow 2x - 1 = 25 \div 5`
`\Rightarrow 2x - 1 = 5`
`\Rightarrow 2x = 6`
`\Rightarrow x = 3`
Vây, `x = 3.`
`b,`
\(3^{x-1}+2\cdot3^x=21\)
`\Rightarrow 3^x \div 3 + 2. 3^x = 21`
`\Rightarrow 3^x . \frac{1}{3} + 2. 3^x = 21`
`\Rightarrow 3^x . (\frac{1}{3} + 2) = 21`
`\Rightarrow 3^x . \frac{7}{3} = 21`
`\Rightarrow 3^x = 21 \div \frac{7}{3}`
`\Rightarrow 3^x = 9`
`\Rightarrow 3^x = 3^2`
`\Rightarrow x = 2`
Vậy, `x = 2.`
`c,`
\(2^{x-3}+2^{x+1}=17\)
`\Rightarrow 2^x \div 2^3 + 2^x . 2 = 17`
`\Rightarrow 2^x . \frac{1}{8} + 2^x . 2 = 17`
`\Rightarrow 2^x . (\frac{1}{8} + 2) = 17`
`\Rightarrow 2^x . \frac{17}{8} = 17`
`\Rightarrow 2^x = 17 \div \frac{17}{8}`
`\Rightarrow 2^x = 8`
`\Rightarrow 2^x = 2^3`
`\Rightarrow x = 3`
Vậy, `x = 3`
`d,`
\(5^x-5^{x-1}=20\)
`\Rightarrow 5^x - 5^x \div 5 = 20`
`\Rightarrow 5^x - 5^x . \frac{1}{5} = 20`
`\Rightarrow 5^x . (1 - \frac{1}{5} = 20`
`\Rightarrow 5^x . \frac{4}{5} = 20`
`\Rightarrow 5^x = 20 \div \frac{4}{5}`
`\Rightarrow 5^x = 25`
`\Rightarrow 5^x = 5^2`
`\Rightarrow x = 2`
Vậy, `x = 2.`
\(a.25:\left(2x-1\right)=5\)
\(2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\)
\(b.3^x:3+2.3^x=21\)\(\Leftrightarrow3^x.\dfrac{1}{3}+2.3^x=21\)
\(\Leftrightarrow3^x\left(\dfrac{1}{3}+2\right)=21\)
\(\Leftrightarrow3^x.\dfrac{7}{3}=21\)
\(\Leftrightarrow3^x=9\Leftrightarrow x=2\)
\(c.2^x:2^3+2^x.2=17\Leftrightarrow2^x.\dfrac{1}{8}+2^x.2=17\)
\(\Leftrightarrow2^x.\dfrac{17}{8}=17\Leftrightarrow2^x=8\Leftrightarrow x=3\)
\(d.5^x-5^x:5=20\Leftrightarrow5^x-5^x.\dfrac{1}{5}=20\)
\(\Leftrightarrow5^x\left(1-\dfrac{1}{5}\right)=20\Leftrightarrow5^x=20:\dfrac{4}{5}\Leftrightarrow5^x=25\Leftrightarrow x=2\)
Tìm x biết
a) (x-1/2)^2=4
b) 10/1/2-(x+1/3)^2=1/1/2
c) (x-1/5)^2+17/25=26/25
d) 1/5/27+(3x-7/9)^3=24/27
a) (x - 1/2)2 = 4
<=> (x - 1/2)2 = 22
<=> x - 1/2 = -2; 2
<=> x - 1/2 = 2 hoặc x - 1/2 = -2
x = 2 + 1/2 x = -2 + 1/2
x = 5/2 x = -3/2
=> x = 5/2 hoặc x = -3/2
b) 10/1/2 - (x + 1/3)2 = 1/1/2
<=> -(x + 1/3)2 = 1/1/2 - 10/1/2
<=> -(x + 1/3)2 = 1/2 - 5
<=> -(x + 1/3)2 = -5.2 + 1/2
<=> -(x + 1/3)2 = -9/2
<=> (x + 1/3)2 = 9/2
<=> x + 1/3 = \(\sqrt{\frac{9}{2}}\) hoặc x + 1/3 = \(-\sqrt{\frac{9}{2}}\)
x = \(\frac{3\sqrt{2}}{2}\) - 1/3 x = \(-\frac{3\sqrt{2}}{2}\) -1/3
=> x = \(\frac{3\sqrt{2}}{2}\) - 1/3 hoặc x = \(-\frac{3\sqrt{2}}{2}\) -1/3
c) (x - 1/5)2 + 17/25 = 26/25
<=> (x - 1/5)2 = 26/25 - 17/25
<=> (x - 1/5)2 = (3/5)2
<=> x - 1/5 = -3/5; 3/5
<=> x - 1/5 = 3/5 hoặc x - 1/5 = -3/5
x = 3/5 + 1/5 x = -3/5 + 1/5
x = 4/5 x = -2/5
=> x = 4/5 hoặc x = -2/5
\(a,[(2\cdot x-11):3+1]\cdot5=20\\\Rightarrow (2x-11):3+1=20:5\\\Rightarrow (2x-11):3+1=4\\\Rightarrow (2x-11):3=4-1\\\Rightarrow (2x-11):3=3\\\Rightarrow2x-11=3\cdot3\\\Rightarrow2x-11=9\\\Rightarrow2x=9+11\\\Rightarrow2x=20\\\Rightarrow x=20:2=10\)
\(b,(25-2x)^3:5-3^2=4^2\\\Rightarrow(25-2x)^3:5-9=16\\\Rightarrow(25-2x)^3:5=16+9\\\Rightarrow(25-2x)^3:5=25\\\Rightarrow(25-2x)^3=25\cdot5\\\Rightarrow(25-2x)^3=125\\\Rightarrow(25-2x)^3=5^3\\\Rightarrow25-2x=5\\\Rightarrow2x=25-5\\\Rightarrow2x=20\\\Rightarrow x=20:2=10\\Toru\)
Bài giải
a, \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
\(\Rightarrow\text{ }\left(x^2-5\right)\text{ và }\left(x^2-25\right)\text{ trái dấu}\)
Mà \(x^2-5>x^2-25\)
\(\Rightarrow\hept{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 25\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>\frac{5}{x}\\x< \frac{25}{x}\end{cases}}\)\(\Rightarrow\text{ }\frac{5}{x}< x< \frac{25}{x}\text{ }\Rightarrow\text{ }\frac{5}{x}< \frac{x^2}{x}< \frac{25}{x}\text{ }\Rightarrow\text{ }5< x^2< 25\)
\(\Rightarrow\text{ }x\in\left\{\pm3\text{ ; }\pm4\right\}\)
b, \(\left(x-1\right)\left(y+2\right)=-3\)
\(\Rightarrow\text{ }\left(x-1\right)\text{ ; }\left(y+2\right)\inƯ\left(-3\right)\)
Ta có bảng :
x - 1 | - 3 | - 1 |
y + 2 | 1 | 3 |
x | - 2 | 0 |
y | - 1 | 1 |
\(\Rightarrow\text{ }\left(x\text{ ; }y\right)=\left(-2\text{ ; }-1\right)\text{ ; }\left(0\text{ ; }1\right)\)
c, \(\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{2\text{ ; }5\right\}\)
d, \(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x^2=-1\text{ ( loại )}\end{cases}}\)
\(\Rightarrow\text{ }x=1\)
a) \(5\left(x+7\right)-10=2^3\cdot5\)
\(\Rightarrow5\left(x+7\right)-10=40\)
\(\Rightarrow5\left(x+7\right)=40+10\)
\(\Rightarrow x+7=\dfrac{50}{5}\)
\(\Rightarrow x+7=10\)
\(\Rightarrow x=10-7\)
\(\Rightarrow x=3\)
b) \(9x-2\cdot3^2=3^4\)
\(\Rightarrow9x-18=81\)
\(\Rightarrow9x=81+18\)
\(\Rightarrow9x=99\)
\(\Rightarrow x=\dfrac{99}{9}\)
\(\Rightarrow x=11\)
c) \(5^{25}\cdot5^{x-1}=5^{25}\)
\(\Rightarrow5^{x-1}=5^{25}:5^{25}\)
\(\Rightarrow5^{x-1}=1\)
\(\Rightarrow5^{x-1}=5^0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
a) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(=>2x+\frac{3}{5}=\frac{3}{5}\)
\(2x=\frac{3}{5}-\frac{3}{5}\)
\(2x=0\)
\(x=0:2\)
\(x=0\)
b) \(\left(3x-1\right).\left(-\frac{1}{2x}+5\right)=0\)
=> \(\left(3x-1\right)=0\)hoặc \(\left(-\frac{1}{2x}+5\right)=0\)hoặc \(\left(3x-1\right)\)và\(\left(-\frac{1}{2x}+5\right)\)cùng bằng 0.
\(\orbr{\begin{cases}3x-1=0\\-\frac{1}{2x}+5=0\end{cases}}=>\orbr{\begin{cases}3x=1\\-\frac{1}{2x}=-5\end{cases}}=>\orbr{\begin{cases}x\in\varnothing\\2x=\frac{1}{5}\end{cases}}=>x=\frac{1}{5}:2=>x=\frac{1}{10}\)
a, \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
b, \(\left[{}\begin{matrix}5-x=-5\\5-x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=0\end{matrix}\right.\)
a. \(\left(x-1\right)^2=1\)
\(\Leftrightarrow\left(x-1\right)^2=\left(\pm1\right)^2\)
TH1: \(x-1=1\)
\(\Leftrightarrow x=1+1\)
\(\Leftrightarrow x=2\)
TH2: \(x-1=\left(-1\right)\)
\(\Leftrightarrow x=\left(-1\right)+1\)
\(\Leftrightarrow x=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
Vậy \(x=2\) hoặc \(x=0\)
b. \(\left(5-x\right)^2=25\)
\(\Leftrightarrow\left(5-x\right)^2=\left(\pm5\right)^2\)
TH1: \(5-x=5\)
\(\Leftrightarrow x=5-5\)
\(\Leftrightarrow x=0\)
TH2: \(5-x=\left(-5\right)\)
\(\Leftrightarrow x=5-\left(-5\right)\)
\(\Leftrightarrow x=10\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=10\end{cases}}\)
Vậy \(x=0\) hoặc \(x=10\)
HT