Cho tam giác abc . vẽ ad,be,cf lần luotj vuông góc với bc,ac,ab tại d,e,f CMR
a) ab+ac>2ad
b)ab+ac+bc>ad+be+cf
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác vuông ABC, theo hệ thức lượng: \(BD=\frac{c^2}{a}.\)
Xét tam giác vuông BDA, ta có: \(m=EB=\frac{BD^2}{BA}=\frac{c^3}{a^2}\)
Hoàn toàn tương tự: \(n=\frac{b^3}{a^2}\)
Vậy thì \(a.m.n=\frac{b^3.c^3}{a^3}\)
Lại có: \(bc=ah\Rightarrow\frac{bc}{a}=h\Rightarrow\frac{b^3c^3}{a^3}=h^3\Rightarrow a.m.n=h^3.\)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
Do đó: ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ABC
b: Kẻ HM//AB(M thuộc AC)
HN//AC(N thuộc AB)
Xét tứ giác AMHN có
AM//HN
AN//HM
Do đó: AMHN là hình bình hành
=>AM=HN; AN=HM
ΔAHM có AH<AM+MH
=>AH<AM+AN
HN//AC
mà BH vuông góc AC
nên HB vuông góc HN
ΔHBN vuông tại H
=>HB<BN
HM//AB
CH vuông góc AB
Do đó: HC vuông góc HM
=>ΔHCM vuông tại H
=>HC<MC
AH<AM+AN
HB<BN
HC<MC
=>HA+HB+HC<AM+AN+BN+MC=AC+AB
Chứng minh tương tự, ta được:
HA+HB+HC<AB+BC và HA+HB+HC<AC+BC
=>3*(HA+HB+HC)<2(BA+BC+AC)
=>HA+HB+HC<2/3*(BA+BC+AC)
giúp zới TvT
a) -Có: A∉BC, AD⊥BC tại D.
\(\Rightarrow\)AD là đường vuông góc còn AB, AC là đường xiên.
\(\Rightarrow AB>AD,AC>AD\) (quan hệ giữa đường vuông góc và đường xiên).
\(\Rightarrow AB+AC>AD+AD=2AD\)
b) -Có: B∉AC, BE⊥AC tại E.
\(\Rightarrow\)BE là đường vuông góc còn BC là đường xiên.
\(\Rightarrow BC>BE\) (quan hệ giữa đường vuông góc và đường xiên).
-Có: C∉AB, CE⊥AB tại E.
\(\Rightarrow\)CE là đường vuông góc còn BC là đường xiên.
\(\Rightarrow AC>CF\) (quan hệ giữa đường vuông góc và đường xiên).
-Có: \(AB>AD,AC>CF,BC>BE\)
\(\Rightarrow AB+AC+BC>AD+BE+CF\)