K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Thay x=-1 vào pt, ta được:

2+b-5=0

hay b=3

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

24 tháng 9 2023

Tham khảo:

a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)

Lại có:

 \(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)

\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)

Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))

Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)

b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)

Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)

Hay \(S\left( {0;1} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4

1. cho pt x2-2(m-2)x-2m=0 với x là ẩn số giá trị của m để pt có 2 nghiệm là 2 số đối nhau là a,0         b, \(\dfrac{-1}{2}\)        c, 2        d, 4 2. biết rằng (x0; y0)là nghiệm của hệ pt \(\left\{{}\begin{matrix}x+2y-3=0\\2x-y-1=0\end{matrix}\right.\) tổng x0 + y0 bằng a,3        b,1               c,0        d, 23. trong △ABC vuông tại A có AC=3; AB=4 khi đó tanB bằng a,\(\dfrac{4}{5}\)      b,\(\dfrac{3}{5}\)             c,\(\dfrac{3}{4}\)       ...
Đọc tiếp

1. cho pt x2-2(m-2)x-2m=0 với x là ẩn số giá trị của m để pt có 2 nghiệm là 2 số đối nhau là 
a,0         b, \(\dfrac{-1}{2}\)        c, 2        d, 4 
2. biết rằng (x0; y0)là nghiệm của hệ pt \(\left\{{}\begin{matrix}x+2y-3=0\\2x-y-1=0\end{matrix}\right.\) tổng x+ ybằng 
a,3        b,1               c,0        d, 2
3. trong △ABC vuông tại A có AC=3; AB=4 khi đó tanB bằng 
a,\(\dfrac{4}{5}\)      b,\(\dfrac{3}{5}\)             c,\(\dfrac{3}{4}\)         d \(\dfrac{4}{3}\)
4. trên đg tròn (O;R) lấy 2 điểm A,B sao cho số đo cung AB lớn hơn bằng \(270^o\) độ dài dây cung là 
a, R\(\sqrt{2}\)   b, R\(\sqrt{3}\)     c, R         d, 2R\(\sqrt{2}\)
5. cho đg tròn (O;3cm) 2 điểm A,B thuộc đường tròn và sđ \(\stackrel\frown{AB}\) = \(60^o\) độ dài cung nhỏ AB là 
a, \(\dfrac{\pi}{2}\) cm  b, \(3\pi\)       c, \(\dfrac{\pi}{3}cm\)    d, \(\pi\)cm
6. giá trị của m để 2 đg thẳng (d): y=xm+6 và (d'): y=3x+2-m song song là 
a, m=-2   b, m=-3      c, m=-4    d, m=1
7. cho hàm số bậc nhất y=ax+b có hệ số góc bằng -1 và tung độ góc bằng 3 giá trị của biểu thức a2+b bằng
a,2        b, 4      c, 9      d, 5
8. cho hệ pt \(\left\{{}\begin{matrix}3x+my=1\\nx+y=3\end{matrix}\right.\) với m,n là tham số biết rằng (x;y)=(1,1) là 1 nghiệm của hệ đã cho giá trị của m+n bằng 
a, -1     b, 3     c, 1     d, 2
9.cho Parabol (P) có pt \(y=\dfrac{x^2}{4}\) vào đường thẳng (d): y=-2x-4
a, (P) cắt (d) tại 2 điểm phân biệt 
b, (P) cắt (d) tại điểm duy nhất (-2;2)
c, (P) ko cắt (d)
d, (P) tiếp xúc với (d), tiếp điểm là (-4;4)
10. tất cả các giá trị của x để \(\sqrt{-2x+6}\) có nghĩa là 
a, x≥3    b, x>3    c, x≤3      d, x<-3

1

Câu 3: C

Câu 4: A
Câu 5: C

Câu 6: m=3

Câu 7: B

Câu 8: D

Câu 9: D

Câu 10: C

19 tháng 12 2020

a, Phương trình có hai nghiệm khi 

\(\Delta'=m^2-2\left(m^2-2\right)=-m^2+4\ge0\Leftrightarrow-2\le m\le2\)

b, Theo định lí Viet \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)

\(A=\left|2x_1x_2+x_1+x_2-4\right|\)

\(=\left|m^2-2-m-4\right|\)

\(=\left|\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\right|\)

\(=\left|-\left(m-\dfrac{1}{2}\right)^2+\dfrac{25}{4}\right|\le\dfrac{25}{4}\)

\(maxA=\dfrac{25}{4}\Leftrightarrow m=\dfrac{1}{2}\)

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

2:

a: y1+y2=-(x1+x2)=-5

y1*y2=(-x1)(-x2)=x1x2=6

Phương trình cần tìm có dạng là;

x^2+5x+6=0

b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6

y1*y2=1/x1*1/x2=1/x1x2=1/6

Phương trình cần tìm là:

a^2-5/6a+1/6=0