Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}y_1+y_2=2x_1-x_2+2x_2-x_1\\y_1y_2=\left(2x_1-x_2\right)\left(2x_2-x_1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2\\y_1y_2=-2x_1^2-2x_2^2+5x_1x_2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2\left(x_1+x_2\right)^2+9x_1x_2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2.\left(-\dfrac{5}{3}\right)^2+9.\left(-2\right)=-\dfrac{212}{9}\end{matrix}\right.\)
\(\Rightarrow y_1;y_2\) là nghiệm của:
\(y^2+\dfrac{5}{3}y-\dfrac{212}{9}=0\Leftrightarrow9y^2+10y-212=0\)
viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn
chủ yếu là hỏi câu c hả? tớ làm mỗi đoạn đưa về tổng - tích thôi, bạn giải thấy khó chỗ nào thì hỏi cụ thể nhe ^^
\(\left(x_1+2x_2\right)\left(x_2+2x_1\right)=x_1x_2+2x_2^2+2x_1^2+4x_1x_2=2\left(x_1+x_2\right)^2-4x_1x_2+5x_1x_2\)
đến đây Vi-ét đc òi
Gotcha Tokoyami
Có \(\Delta=\left(m-2\right)^2-4\left(-m^2+3m-4\right)\)
\(=m^2-4m+4+4m^2-12m+16\)
\(=5m^2-16m+20\)
\(=5\left(m^2-\frac{16}{5}m+4\right)\)
\(=5\left[\left(m^2-2.\frac{8}{5}m+\frac{64}{25}\right)+\frac{36}{25}\right]\)
\(=5\left[\left(m-\frac{8}{5}\right)^2+\frac{36}{25}\right]>0\forall m\)
Nên pt có 2 nghiệm phân biệt với mọi m
a, Với m = 0 thì pt trở thành
\(x^2+2x-4=0\)
Có \(\Delta'=1+4=5>0\)
\(\Rightarrow\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)
b, Theo hệ thức Vi-et \(x_1x_2=-m^2+3m-4=-\left(m-\frac{3}{2}\right)^2-\frac{7}{4}< 0\)
nên pt có 2 nghiệm trái dấu
c, Thiếu đề , nhưng làm hộ 1 bước biến đổi như bạn dưới
a: \(a_1+a_2=2x_1-x_2+2x_2-x_1=x_1+x_2=7\)
\(a_1a_2=\left(2x_1-x_2\right)\left(2x_2-x_1\right)\)
\(=4x_1x_2-2x_1^2-2x_2^2+x_1x_2\)
\(=5x_1x_2-2\left(x_1^2+x_2^2\right)\)
\(=5x_1x_2-2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\)
\(=5\cdot3-2\left[7^2-2\cdot3\right]\)
\(=15-2\left[49-6\right]\)
\(=15-2\cdot43=15-86=-71\)
Do đó: Pt cần tìm là \(a^2-7a-71=0\)
b: \(A^2=\left[\left(2x_1-x_2\right)^2+\left(2x_2-x_1\right)^2+2\left(2x_1-x_2\right)\left(2x_2-x_1\right)\right]\)
\(=\left[4x_1^2-4x_1x_2+x_2^2+4x_2^2-4x_2x_1+x_1^2+2\cdot\left(-71\right)\right]\)
\(=\left[5\left(x_1^2+x_2^2\right)-8x_1x_2+2\cdot\left(-71\right)\right]\)
\(=\left[5\cdot43-8\cdot3-142\right]\)
\(=49\)
=>A=7 hoặc A=-7
a) \(\Delta\)' = \(m^2-m^2+4=4>0\forall m\)
\(\Rightarrow\) pt có 2 nghiệm phân biệt \(\forall m\)
b) ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\2x_1-x_2=0\end{matrix}\right.\)\(\Leftrightarrow\) \(\left\{{}\begin{matrix}3x_1=2m\\x_1+x_2=2m\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=\dfrac{2m}{3}\\\dfrac{2m}{3}+x_2=2m\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=\dfrac{2m}{3}\\x_2=\dfrac{4m}{3}\end{matrix}\right.\)
ta có : \(x_1x_2=m^2-4\) \(\Leftrightarrow\) \(\dfrac{8m^2}{9}=m^2-4\)
\(\Leftrightarrow\) \(8m^2=9m^2-36\) \(\Leftrightarrow\) \(m^2=36\) \(\Leftrightarrow\) \(m=\pm6\)
vậy \(m=\pm6\) thỏa mảng đk bài toán
c) ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\3x_1+2x_2=7\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x_1+2x_2=4m\\3x_1+2x_2=7\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=7-4m\\7-4m+x_2=2m\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=7-4m\\x_2=6m-7\end{matrix}\right.\)
ta có : \(x_1x_2=m^2-4\) \(\Leftrightarrow\) \(\left(7-4m\right)\left(6m-7\right)=m^2-4\)
\(\Leftrightarrow\) \(42m-49-24m^2+28m=m^2-4\)
\(\Leftrightarrow\) \(25m^2-70m+45=0\)
\(\Leftrightarrow\) \(5m^2-14m+9=0\)
giải phương trình ta có : \(\left\{{}\begin{matrix}x=\dfrac{9}{5}\\x=1\end{matrix}\right.\)
vậy : \(x=\dfrac{9}{5};x=1\) thỏa mãng đk bài toán
a, Khi m = 0 thì :
pt <=> x^2+2x-3 = 0
<=> (x-1).(x+3) = 0
<=> x-1=0 hoặc x+3=0
<=> x=1 hoặc x=-3
Tk mk nha
Câu a )
\(2x^4+3x^2-2=0\left(1\right)\)
Đặt \(t=x^2\left(t\ge0\right)\) phương trình (1) trở thành:
\(2t^2+3t-2=0\)
\(\Leftrightarrow t\left(2t-1\right)+4t-2=0\)
\(\Leftrightarrow t\left(2t-1\right)+2\left(2t-1\right)=0\)
\(\Leftrightarrow\left(2t-1\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2t-1=0\\t+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{2}\\1=-2\left(loại\right)\end{cases}}\)
Với \(t=\frac{1}{2}\Leftrightarrow x^2=\frac{1}{2}\Rightarrow x=\pm\frac{\sqrt{2}}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\pm\frac{\sqrt{2}}{2}\right\}\)
Câu b )
\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-1\right)^2\)
\(\Delta>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)
\(\hept{\begin{cases}x_1+x_2=m+1\\x_1x_2=m\end{cases}}\)
\(x_1=3x_2\Rightarrow3x_2+x_2=m+1\Leftrightarrow4x_2=m+1\)
\(\Leftrightarrow x_2=\frac{m+1}{4}\Rightarrow x_1=\frac{3\left(m+1\right)}{4}\)
\(x_1x_2=m\Leftrightarrow\frac{3\left(m+1\right)^2}{16}=m\)
\(\Leftrightarrow3m^2+6m+3=16m\)
\(\Leftrightarrow3m^2-10m+3=0\)
\(\Leftrightarrow\left(3m-1\right)\left(m-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{3}\\m=3\end{cases}\left(tm\right)}\)