K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2022

a, Xét tam giác ABH và tam giác ACK có 

AB = AC ; ^A _ chung 

Vậy tam giác ABH = tam giác ACK (ch-gn) 

=> ^ABH = ^ACK 

b, Ta có ^B = ^C ; ^ABH = ^ACK 

=> ^OBC = ^OCB 

Vậy tam giác OBC cân tại O

c, Xét tan giác OBK và tam giác OCH 

^BOK = ^COH (đối đỉnh) ; ^OBK = ^OCH (cmt) ; ^OKB = ^OHC = 900

Vậy tam giác OBK = tam giác OCH (g.g.g) 

27 tháng 1 2021

a)Vì ABC cân tại A (gt) => AB = AC (TC Tg cân)

BH vg góc AC (gt) => ^AHB=^CHB = 90o

CK vg góc AB (gt) => ^AKC=^BKC = 90o

Xét tg ABH và  tg ACK:

^AHB = ^AKC (= 90)

^A chung

AB = AC (cmt)

=> tg ABH = tg ACK (ch - gn)

b) Xét tg BKC và tg CHB :

^BKC = ^CHB (=90)

BC chung

^B = ^C (tg ABC cân tại A)

=> tg BKC và tg CHB  (ch - gn)

=> ^KCB = ^HBC (2 góc tương ứng)

hay ^OBC = ^OCB 

=> tg OBC cân tại O  (đpcm)

c)  tg BKC và tg CHB  (cmt) => BK = CH (2 cạnh tương ứng)

Ta có: ^B = ^ABH + ^CBH

          ^C = ^ACK + ^BCK

Mà ^B = ^C (tg ABC cân tại A);  ^CBH = ^BCK(cmt)

=>   ^ABH = ^ACK

Xét  tg OBK và tgOCK:

^BKO = ^CHO (=90)

BK = CH (cmt)

^KBO = ^HCO (^ABH = ^ACK)

=> tg OBK = tg OCK (gcg)

 

a) Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)

b) Ta có: ΔABH=ΔACK(cmt)

nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)

Ta có: \(\widehat{ABH}+\widehat{CBH}=\widehat{ABC}\)(tia BH nằm giữa hai tia BA,BC)

\(\widehat{ACK}+\widehat{BCK}=\widehat{ACB}\)(tia CK nằm giữa hai tia CA,CB)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔABC cân tại A)

và \(\widehat{ABH}=\widehat{ACK}\)(cmt)

nên \(\widehat{CBH}=\widehat{BCK}\)

hay \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

c)

Sửa đề: ΔOBK=ΔOCH

Xét ΔOBK vuông tại K và ΔOCH vuông tại H có 

OB=OC(ΔOBC cân tại O)

\(\widehat{OBK}=\widehat{OCH}\)(cmt)

Do đó: ΔOBK=ΔOCH(cạnh huyền-góc nhọn)

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK

b: Xét ΔOBK vuông tại K và ΔOCH vuông tại H có

KB=HC

\(\widehat{KBO}=\widehat{HCO}\)

Do đó:ΔOBK=ΔOCH

9 tháng 3 2022

1 lấy đâu ra kb=hc

 

a: Xet ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

góc BAH chung

=>ΔABH=ΔACK

b: ΔABH=ΔACK

=>góc ABH=góc ACK

=>góc OBC=góc OCB

=>ΔOBC cân tại O

c: Xét ΔOKB vuông tại K và ΔOHC vuông tại H có

OB=OC

BK=CH

=>ΔOKB=ΔOHC

d: Xet ΔBCA có AH/AC=AK/AB

nên HK//BC

a: Xet ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

góc BAH chung

=>ΔABH=ΔACK

b: ΔABH=ΔACK

=>góc ABH=góc ACK

=>góc OBC=góc OCB

=>ΔOBC cân tại O

c: Xét ΔOKB vuông tại K và ΔOHC vuông tại H có

OB=OC

BK=CH

=>ΔOKB=ΔOHC

d: Xet ΔBCA có AH/AC=AK/AB

nên HK//BC

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

b: Ta có: ΔAHB=ΔAKC

=>AH=AK và \(\widehat{ABH}=\widehat{ACK}\)

Ta có: AH+HC=AC

AK+KB=AB

mà AH=AK và AC=AB

nen HC=KB

Xét ΔOKB vuông tại K và ΔOHC vuông tại H có

KB=HC

\(\widehat{KBO}=\widehat{HCO}\)

Do đó: ΔOKB=ΔOHC

c: ta có; ΔOKB=ΔOHC

=>OB=OC

=>O nằm trên đường trung trực của BC(1)

ta có: AB=AC

=>A nằm trên đường trung trực của BC(2)

ta có: IB=IC

=>I nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,I thẳng hàng

15 tháng 2 2022

ai giúp mình với

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK

b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

KC=HB

Do đó: ΔKBC=ΔHCB

Suy ra: \(\widehat{OCB}=\widehat{OBC}\)

hay ΔOCB cân tại O

c: Xét ΔOBK vuông tại K và ΔOCH vuông tại H có

OB=OC

KB=HC

Do đó: ΔOBK=ΔOCH

14 tháng 2 2021

Tgiac ABC cân tại A => AB = AC và góc ABC = ACB

a) Xét tgiac ABH và ACK có:

+ AB = AC

+ chung góc A

+ góc AHB = AKC = 90 độ

=> tgiac ABH = ACK (ch-gn)

=> góc ABH = ACK

Mà góc ABC = ACB

=> ABC - ABH = ACB - ACK

=> góc OBC = OCB

=> tgiac OBC cân tại O

=> đpcm

b) Tgiac OBC cân tại O => OB = OC

Xét tgiac OBK và OCH có:

+ góc OKB = OHC = 90 độ

+ OB = OC

+ góc KBO = HCO (cmt)

=>  tgiac OBK = OCH (ch-gn)

=> đpcm

c) Xét tgiac ABO và ACO có:

+ OB = OC

+ AO chung

+ AB = AC

=> tgiac ABO = ACO (ccc)

=> góc BAO = CAO

=> tia AO là tia pgiac của góc BAC (1)

Xét tgiac ABI và ACI:

+ AI chung

+ AB = AC

+ IB = IC

=> tgiac ABI = ACI (ccc)

=> góc BAI = CAI

=> AI là tia pgiac góc BAC (2)

(1), (2) => A, O, I thẳng hàng (đpcm)

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH chung

Do đó: ΔAHB=ΔAKC

b: ΔAHB=ΔAKC

=>AH=AK

c: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co

AI chung

AH=AK

Do đó: ΔAKI=ΔAHI

=>góc KAI=góc HAI

=>AI là phân giác của góc BAC

11 tháng 1 2022

mik cần gấp nha cứu mik

còn bạn nào hcoj giỏi thức ko huhu :((

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABH=ΔACK

b: Xét ΔAHK có AH=AK(ΔABH=ΔACK)

nên ΔAHK cân tại A

c: Xét ΔABC có

AK/AB=AH/AC

Do đó: KH//BC