K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

a) 6-32-2b+ab

3*(2-a)-b*(2-a)

(2-a)(3-b)

chỉ biết làm câu a

26 tháng 6 2016

a) \(=3\left(2-a\right)-b\left(2-a\right)=\left(3-b\right)\left(2-a\right)\)

b) \(=2a-3+2a^2-3a-\left(3-3a+2a-2a^2\right)=4a^2-6=2\cdot\left(2a^2-3\right)\)

19 tháng 3 2020

Bn ơi

Bn 0 điểm hỏi đáp mak

sao tăng điểm đc????

Còn đề đó lên google tra hoặc chọn câu hỏi tương tự nhé!

Hok tốt!

19 tháng 3 2020

Hmm...Thanks ? :D

a: \(\left(x+y+z\right)^2-\left(y+z\right)^2\)

\(=\left(x+y+z-y-z\right)\left(x+y+z+y+z\right)\)

\(=x\left(x+2y+3z\right)\)

b: \(\left(x+3\right)^2+4\left(x+3\right)+4\)

\(=\left(x+3+2\right)^2\)

\(=\left(x+5\right)\left(x+5\right)\)

c: \(25+10\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(x+1+5\right)^2\)

\(=\left(x+6\right)\left(x+6\right)\)

DD
30 tháng 9 2021

a) \(6-3a-2b+ab=ab-2b-\left(3a-6\right)=b\left(a-2\right)-3\left(a-2\right)\)

\(=\left(a-2\right)\left(b-3\right)\).

b) \(\left(2a-3\right)\left(1+a\right)-\left(1-a\right)\left(3+2a\right)\)

\(=2a^2+2a-3-3a-\left(3-3a+2a-2a^2\right)\)

\(=2a^2-a+3+2a^2+a-3\)

\(=2\left(2a^2-3\right)\)

4 tháng 6 2016

Dễ thấy với a,b >0 thì (a+b)/2 ≥ √ab <=> 1/(a+b) ≤ 1/4 (1/a +1/b) 
Áp dụng bất đẳng thức Cauchy ta được 
1/(a+2b+3c)=1/[(a+c)+2(b+c)]≤ 1/4[1/(a+c)+1/2(b+c)] (lại áp dụng tiếp được) 
≤ 1/16a+1/16c+1/32b+1/32c 
=1/16a+1/32b+3/32c 
Trường hợp này dấu "=" xảy ra <=> a+c=2(b+c);a=c;b=c <=> c= 0 mâu thuẩn giả thiết 
Do đó dấu "=" không xảy ra 
Thế thì 1/(a+2b+3c)<1/16a+1/32b+3/32c (1) 
Tương tự 1/( b+2c+3a)<1/16b+1/32c+3/32a (2) 
1/ ( c+2a+3b) < 1/16c+1/32a+3/32b (3) 
Cộng (1)(2)(3) cho ta 
1/( a+2b+3c) + 1/( b+2c+3a) + 1/ ( c+2a+3b) <(1/16+1/32+3/32)(1/a+1/b+1/c) 
=3/16*(ab+bc+ca)abc= 3/16

tk nha mk trả lời đầu tiên đó!!!

bài 1: 

tìm a,b,c biết: 

3a = 2b; 4b = 3c và a + 2b - 3c 

giải 

\(3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3};4b=3c\Rightarrow\frac{b}{3}=\frac{c}{4}\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\) và a + 2b - 3c 

áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)

với \(\frac{a}{2}=5\Rightarrow a=5.2=10\)

với \(\frac{2b}{6}=5\Rightarrow b=\frac{5.6}{2}=15\)

với \(\frac{3c}{12}=5\Rightarrow c=\frac{5.12}{3}=20\)

vậy a = 10,b=15,c=20 

tương tự câu 2

30 tháng 12 2017

đố ai giải đc

24 tháng 7 2018

\(15\left(2a^2-1\right)+5\left(3-\frac{1}{5a}-6a^2\right)\)

\(=30a^2-15+15-\frac{1}{a}-30a^2\)

\(=-\frac{1}{a}\)

tại \(a=2017\)=> M= \(\frac{-1}{a}=\frac{-1}{2017}\)

\(\left(x-y\right)\left(x^2+xy+y^2\right)+y^3\)

\(=x^3-y^3+y^3\)

\(=x^3\)

ại \(x=2\)=> N= \(x^3=2^3=8\)

3 tháng 7 2017

\(P=a\left(2a-3\right)-2a\left(a+1\right)+5\)

\(=2a^2-3a-2a^2-2a+5\)

\(=\left(2a^2-2a^2\right)-\left(3a+2a\right)+5\)

\(=-5a+5=-5\left(a-1\right)⋮5\)