K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left(x+y+z\right)^2-\left(y+z\right)^2\)

\(=\left(x+y+z-y-z\right)\left(x+y+z+y+z\right)\)

\(=x\left(x+2y+3z\right)\)

b: \(\left(x+3\right)^2+4\left(x+3\right)+4\)

\(=\left(x+3+2\right)^2\)

\(=\left(x+5\right)\left(x+5\right)\)

c: \(25+10\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(x+1+5\right)^2\)

\(=\left(x+6\right)\left(x+6\right)\)

2:

-8x^6-12x^4y-6x^2y^2-y^3

=-(8x^6+12x^4y+6x^2y^2+y^3)

=-(2x^2+y)^3

3:

=(1/3)^2-(2x-y)^2

=(1/3-2x+y)(1/3+2x-y)

Cảm ơn bạn nhiều! Bạn có thể làm bài 1 không

 

a: Ta có: \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2\)

\(=\left(x^2+x-1-x^2-2x-3\right)\left(x^2+x-1+x^2+2x+3\right)\)

\(=\left(-x-4\right)\left(2x^2+3x+2\right)\)

b: Ta có: \(\left(x-3\right)^2-16\)

\(=\left(x-3-4\right)\left(x-3+4\right)\)

\(=\left(x+1\right)\left(x-7\right)\)

c: \(y^2+16y+64=\left(y+8\right)^2\)

Bài 2: Viết các biểu thức sau dưới dạng bình phương một tổng a) x² + 6x + 9 b) x² + x + 1 Bài 3: Rút gọn biểu thức: a) (x +y)2+(x - y) Bài 4: Tìm x biết a) (2x + 1)²- 4(x + 2)²=9 b) (x+3)²-(x-4)( x + 8) = 1 Bài 5: Tính nhẩm: a) 19. 21 b) 29.31 c) 2xy² + x²y + 1 b)2(x - y)(x + y) +(x - y)²+ (x + y)² c) 3(x + 2)²+ (2x - 1)²- 7(x + 3)(x - 3) = 36 c) 39. 41: Bài 6: Chứng minh rằng các biểu thức sau luôn dương với mọi giá...
Đọc tiếp

Bài 2: Viết các biểu thức sau dưới dạng bình phương một tổng a) x² + 6x + 9 b) x² + x + 1 Bài 3: Rút gọn biểu thức: a) (x +y)2+(x - y) Bài 4: Tìm x biết a) (2x + 1)²- 4(x + 2)²=9 b) (x+3)²-(x-4)( x + 8) = 1 Bài 5: Tính nhẩm: a) 19. 21 b) 29.31 c) 2xy² + x²y + 1 b)2(x - y)(x + y) +(x - y)²+ (x + y)² c) 3(x + 2)²+ (2x - 1)²- 7(x + 3)(x - 3) = 36 c) 39. 41: Bài 6: Chứng minh rằng các biểu thức sau luôn dương với mọi giá trị của biển x a) 9x² - 6x +2 b) x² + x + 1 Bài 7: Tìm GTNN của: a)A=x-3x+5 Bài 8: Tìm GTLNcủa: a) A = 4 - x² + 2x Bài 9: Tính giá trị của biểu thức A = x³+ 12x²+ 48x + 64 tai x = 6 C=x+9x+27x + 27 tại x= - 103 c) 2x² + 2x + 1. b) B = (2x - 1)² + (x + 2)² b) B = 4x - x² B=x −6x + 12x – 8 tại x = 22 D=x³15x² + 75x - 125 tai x = 25 Bài 10.Tìm x biết: a) (x - 3)(x + 3x +9)+x(x + 2)2 - x)=1 b)(x+1)- (x - 1) - 6(x - 1}} = Bài 11: Rút gọn: a) (x - 2) - x(x + 1)(x - 1) + 6x(x - 3) b)(x - 2)(x - 2x+4)(x+2)(x+2x+

1

Bài 8:

Ta có: \(A=-x^2+2x+4\)

\(=-\left(x^2-2x-4\right)\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=1

10 tháng 12 2021

\(a,=xy\left(x+2y+1\right)\\ b,=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\\ c,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ d,=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=\left(x-2\right)\left(x+2+x-2\right)=2x\left(x-2\right)\\ e,=\left(x+1\right)^2-y^2=\left(x+y+1\right)\left(x-y+1\right)\\ g,=\left(x+9-6x\right)\left(x+9+6x\right)=\left(9-5x\right)\left(7x+9\right)\\ h,=\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\\ i,=\left(x-1\right)^3-y^3=\left(x-y-1\right)\left(x^2-2x+1+xy+y+y^2\right)\)

10 tháng 12 2021

c: =(x-5)(x+3)

e: =(x+1-y)(x+1+y)

a: Ta có: \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)

\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)

\(=\left(x^2+9x\right)^2+38\left(x^2+9x\right)+360+1\)

\(=\left(x^2+9x\right)^2+2\cdot\left(x^2+9x\right)\cdot19+19^2\)

\(=\left(x^2+9x+19\right)^2\)

24 tháng 8 2021

b. \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)

\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)

\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)

c. \(x^2-2x\left(y+2\right)+y^2+4y+4\)

\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)

\(=\left(x-y-2\right)^2\)

d. \(x^2+2x\left(y+1\right)+y^2+2y+1\)

\(=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+y+1\right)^2\)

22 tháng 8 2023

a) \(x^4-y^4\)

\(=\left(x^2\right)^2-\left(y^2\right)^2\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)

b) \(x^2-3y^2\)

\(=x^2-\left(y\sqrt{3}\right)^2\)

\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)

c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)

\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)

\(=\left(5x-5y\right)\left(x+y\right)\)

\(=5\left(x-y\right)\left(x+y\right)\)

d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)

\(=\left[3\left(x-y\right)+2\left(x+y\right)\right]\left[3\left(x-y\right)-2\left(x+y\right)\right]\)

\(=\left(3x-3y+2x+2y\right)\left(3x-3y-2x-2y\right)\)

\(=\left(5x-y\right)\left(x-5y\right)\)

e) \(\left(4x^2-4x+1\right)-\left(x+1\right)^2\)

\(=\left(2x-1\right)^2-\left(x+1\right)\)

\(=\left(2x-1+x+1\right)\left(2x-1-x-1\right)\)

\(=3x\left(x-2\right)\)

f) \(x^3+27\)

\(=x^3+3^3\)

\(=\left(x+3\right)\left(x^2-3x+9\right)\)

g) \(27x^3-0,001\)

\(=\left(3x\right)^3-\left(0,1\right)^3\)

\(=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)

h) \(125x^3-1\)

\(=\left(5x\right)^3-1^3\)

\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)

a: \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)

c: \(x^3-125=\left(x-5\right)\left(x^2+5x+25\right)\)

\(\dfrac{1}{8}x^3-64=\left(\dfrac{1}{2}x-4\right)\left(\dfrac{1}{4}x^2+2x+16\right)\)

d: \(=\left(2x+5y\right)^3\)